These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 18635877)
1. Neuromuscular plasticity during and following 3 wk of human forearm cast immobilization. Clark BC; Issac LC; Lane JL; Damron LA; Hoffman RL J Appl Physiol (1985); 2008 Sep; 105(3):868-78. PubMed ID: 18635877 [TBL] [Abstract][Full Text] [Related]
2. Central nervous adaptations following 1 wk of wrist and hand immobilization. Lundbye-Jensen J; Nielsen JB J Appl Physiol (1985); 2008 Jul; 105(1):139-51. PubMed ID: 18450985 [TBL] [Abstract][Full Text] [Related]
3. Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy. Clark BC; Manini TM; Bolanowski SJ; Ploutz-Snyder LL J Appl Physiol (1985); 2006 Jul; 101(1):264-72. PubMed ID: 16514003 [TBL] [Abstract][Full Text] [Related]
4. Adaptations in human neuromuscular function following prolonged unweighting: I. Skeletal muscle contractile properties and applied ischemia efficacy. Clark BC; Fernhall B; Ploutz-Snyder LL J Appl Physiol (1985); 2006 Jul; 101(1):256-63. PubMed ID: 16514004 [TBL] [Abstract][Full Text] [Related]
5. Time course of changes in corticospinal excitability after short-term forearm/hand immobilization. Karita T; Matsuura A; Kondo Y; Tomimura K; Nakada N; Mori F Neuroreport; 2017 Nov; 28(16):1092-1096. PubMed ID: 28906346 [TBL] [Abstract][Full Text] [Related]
6. Modulation of motor cortex excitability after upper limb immobilization. Zanette G; Manganotti P; Fiaschi A; Tamburin S Clin Neurophysiol; 2004 Jun; 115(6):1264-75. PubMed ID: 15134693 [TBL] [Abstract][Full Text] [Related]
7. Motor skill training and strength training are associated with different plastic changes in the central nervous system. Jensen JL; Marstrand PC; Nielsen JB J Appl Physiol (1985); 2005 Oct; 99(4):1558-68. PubMed ID: 15890749 [TBL] [Abstract][Full Text] [Related]
8. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. Taube W; Schubert M; Gruber M; Beck S; Faist M; Gollhofer A J Appl Physiol (1985); 2006 Aug; 101(2):420-9. PubMed ID: 16601305 [TBL] [Abstract][Full Text] [Related]
9. Facilitation of corticospinal connections in able-bodied people and people with central nervous system disorders using eight interventions. Stein RB; Everaert DG; Roy FD; Chong S; Soleimani M J Clin Neurophysiol; 2013 Feb; 30(1):66-78. PubMed ID: 23377445 [TBL] [Abstract][Full Text] [Related]
10. Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. Gondin J; Duclay J; Martin A J Neurophysiol; 2006 Jun; 95(6):3328-35. PubMed ID: 16481458 [TBL] [Abstract][Full Text] [Related]
11. Corticospinal properties following short-term strength training of an intrinsic hand muscle. Kidgell DJ; Pearce AJ Hum Mov Sci; 2010 Oct; 29(5):631-41. PubMed ID: 20400192 [TBL] [Abstract][Full Text] [Related]
13. Excitability changes in human corticospinal projections to muscles moving hand and fingers while viewing a reaching and grasping action. Montagna M; Cerri G; Borroni P; Baldissera F Eur J Neurosci; 2005 Sep; 22(6):1513-20. PubMed ID: 16190904 [TBL] [Abstract][Full Text] [Related]
14. Restoration of voluntary muscle strength after 3 weeks of cast immobilization is suppressed in women compared with men. Clark BC; Manini TM; Hoffman RL; Russ DW Arch Phys Med Rehabil; 2009 Jan; 90(1):178-80. PubMed ID: 19154845 [TBL] [Abstract][Full Text] [Related]
15. Corticospinal drive during painful voluntary contractions at constant force output. Del Santo F; Gelli F; Spidalieri R; Rossi A Brain Res; 2007 Jan; 1128(1):91-8. PubMed ID: 17134682 [TBL] [Abstract][Full Text] [Related]
16. Balance training and ballistic strength training are associated with task-specific corticospinal adaptations. Schubert M; Beck S; Taube W; Amtage F; Faist M; Gruber M Eur J Neurosci; 2008 Apr; 27(8):2007-18. PubMed ID: 18412622 [TBL] [Abstract][Full Text] [Related]
17. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Mileva KN; Bowtell JL; Kossev AR Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234 [TBL] [Abstract][Full Text] [Related]
18. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598 [TBL] [Abstract][Full Text] [Related]
19. Pathway-specific plasticity in the human spinal cord. Leukel C; Taube W; Beck S; Schubert M Eur J Neurosci; 2012 May; 35(10):1622-9. PubMed ID: 22487124 [TBL] [Abstract][Full Text] [Related]
20. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]