BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18636226)

  • 1. Post-translational regulation of the tumor suppressor p27(KIP1).
    Vervoorts J; Lüscher B
    Cell Mol Life Sci; 2008 Oct; 65(20):3255-64. PubMed ID: 18636226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase.
    Hsieh FF; Barnett LA; Green WF; Freedman K; Matushansky I; Skoultchi AI; Kelley LL
    Blood; 2000 Oct; 96(8):2746-54. PubMed ID: 11023508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p27(Kip1) signaling: Transcriptional and post-translational regulation.
    Hnit SS; Xie C; Yao M; Holst J; Bensoussan A; De Souza P; Li Z; Dong Q
    Int J Biochem Cell Biol; 2015 Nov; 68():9-14. PubMed ID: 26279144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of p27 KIP1 during tumor development.
    Lee J; Kim SS
    Exp Mol Med; 2009 Nov; 41(11):765-71. PubMed ID: 19887899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The non-canonical functions of p27(Kip1) in normal and tumor biology.
    Sharma SS; Pledger WJ
    Cell Cycle; 2016 May; 15(9):1189-201. PubMed ID: 27082696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control.
    Jäkel H; Weinl C; Hengst L
    Oncogene; 2011 Aug; 30(32):3502-12. PubMed ID: 21423214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p27
    Bencivenga D; Caldarelli I; Stampone E; Mancini FP; Balestrieri ML; Della Ragione F; Borriello A
    Cancer Lett; 2017 Sep; 403():354-365. PubMed ID: 28687353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperation of p27(Kip1) and p18(INK4c) in progestin-mediated cell cycle arrest in T-47D breast cancer cells.
    Swarbrick A; Lee CS; Sutherland RL; Musgrove EA
    Mol Cell Biol; 2000 Apr; 20(7):2581-91. PubMed ID: 10713180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression.
    Boehm M; Yoshimoto T; Crook MF; Nallamshetty S; True A; Nabel GJ; Nabel EG
    EMBO J; 2002 Jul; 21(13):3390-401. PubMed ID: 12093740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BCR signals target p27(Kip1) and cyclin D2 via the PI3-K signalling pathway to mediate cell cycle arrest and apoptosis of WEHI 231 B cells.
    Banerji L; Glassford J; Lea NC; Thomas NS; Klaus GG; Lam EW
    Oncogene; 2001 Nov; 20(50):7352-67. PubMed ID: 11704865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p27
    Bencivenga D; Stampone E; Roberti D; Della Ragione F; Borriello A
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes.
    Tane S; Ikenishi A; Okayama H; Iwamoto N; Nakayama KI; Takeuchi T
    Biochem Biophys Res Commun; 2014 Jan; 443(3):1105-9. PubMed ID: 24380855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p27, The Cell Cycle and Alzheimer´s Disease.
    García-Osta A; Dong J; Moreno-Aliaga MJ; Ramirez MJ
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential control of cyclins D1 and D3 and the cdk inhibitor p27Kip1 by diverse signalling pathways in Swiss 3T3 cells.
    Mann DJ; Higgins T; Jones NC; Rozengurt E
    Oncogene; 1997 Apr; 14(15):1759-66. PubMed ID: 9150381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of p27(Kip1) expression by mitogenic and hypertrophic factors: Involvement of transcriptional and posttranscriptional mechanisms.
    Servant MJ; Coulombe P; Turgeon B; Meloche S
    J Cell Biol; 2000 Feb; 148(3):543-56. PubMed ID: 10662779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel cyclinE/cyclinA-CDK inhibitor targets p27(Kip1) degradation, cell cycle progression and cell survival: implications in cancer therapy.
    Dai L; Liu Y; Liu J; Wen X; Xu Z; Wang Z; Sun H; Tang S; Maguire AR; Quan J; Zhang H; Ye T
    Cancer Lett; 2013 Jun; 333(1):103-12. PubMed ID: 23354589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells.
    Coats S; Whyte P; Fero ML; Lacy S; Chung G; Randel E; Firpo E; Roberts JM
    Curr Biol; 1999 Feb; 9(4):163-73. PubMed ID: 10074425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The p42/p44 mitogen-activated protein kinase activation triggers p27Kip1 degradation independently of CDK2/cyclin E in NIH 3T3 cells.
    Delmas C; Manenti S; Boudjelal A; Peyssonnaux C; Eychène A; Darbon JM
    J Biol Chem; 2001 Sep; 276(37):34958-65. PubMed ID: 11418594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: a new mechanism for tumor suppressor loss-of-function.
    Bencivenga D; Stampone E; Aulitto A; Tramontano A; Barone C; Negri A; Roberti D; Perrotta S; Della Ragione F; Borriello A
    Mol Oncol; 2021 Apr; 15(4):915-941. PubMed ID: 33316141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations of phosphorylation sites Ser10 and Thr187 of p27Kip1 abolish cytoplasmic redistribution but do not abrogate G0/1 phase arrest in the HepG2 cell line.
    Guan X; Chen L; Wang J; Geng H; Chu X; Zhang Q; Du L; De W
    Biochem Biophys Res Commun; 2006 Sep; 347(3):601-7. PubMed ID: 16842750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.