These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 18636276)

  • 61. Presence of env-like sequences in Quercus suber retrotransposons.
    Carvalho M; Ribeiro T; Viegas W; Morais-Cecilio L; Rocheta M
    J Appl Genet; 2010; 51(4):461-7. PubMed ID: 21063063
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons.
    Bao W; Kapitonov VV; Jurka J
    Mob DNA; 2010 Jan; 1(1):3. PubMed ID: 20226081
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Terminal-repeat retrotransposons with GAG domain in plant genomes: a new testimony on the complex world of transposable elements.
    Chaparro C; Gayraud T; de Souza RF; Domingues DS; Akaffou S; Laforga Vanzela AL; Kochko Ad; Rigoreau M; Crouzillat D; Hamon S; Hamon P; Guyot R
    Genome Biol Evol; 2015 Jan; 7(2):493-504. PubMed ID: 25573958
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.
    Carr M; Bensasson D; Bergman CM
    PLoS One; 2012; 7(11):e50978. PubMed ID: 23226439
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Genome-wide analysis of LTR-retrotransposons in oil palm.
    Beulé T; Agbessi MD; Dussert S; Jaligot E; Guyot R
    BMC Genomics; 2015 Oct; 16():795. PubMed ID: 26470789
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements.
    Park M; Jo S; Kwon JK; Park J; Ahn JH; Kim S; Lee YH; Yang TJ; Hur CG; Kang BC; Kim BD; Choi D
    BMC Genomics; 2011 Jan; 12():85. PubMed ID: 21276256
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers.
    Kumar A; Pearce SR; McLean K; Harrison G; Heslop-Harrison JS; Waugh R; Flavell AJ
    Genetica; 1997; 100(1-3):205-17. PubMed ID: 9440274
    [TBL] [Abstract][Full Text] [Related]  

  • 68. GalEa retrotransposons from galatheid squat lobsters (Decapoda, Anomura) define a new clade of Ty1/copia-like elements restricted to aquatic species.
    Terrat Y; Bonnivard E; Higuet D
    Mol Genet Genomics; 2008 Jan; 279(1):63-73. PubMed ID: 17929059
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics.
    Khan H; Yuan H; Liu X; Nie Y; Majid M
    BMC Genomics; 2024 Jul; 25(1):687. PubMed ID: 38997681
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification.
    Amyotte SG; Tan X; Pennerman K; Jimenez-Gasco Mdel M; Klosterman SJ; Ma LJ; Dobinson KF; Veronese P
    BMC Genomics; 2012 Jul; 13():314. PubMed ID: 22800085
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A genome-wide screening of BEL-Pao like retrotransposons in Anopheles gambiae by the LTR_STRUC program.
    Marsano RM; Caizzi R
    Gene; 2005 Sep; 357(2):115-21. PubMed ID: 16102916
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Constant conflict between Gypsy LTR retrotransposons and CHH methylation within a stress-adapted mangrove genome.
    Wang Y; Liang W; Tang T
    New Phytol; 2018 Nov; 220(3):922-935. PubMed ID: 29762876
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass Brachypodium distachyon.
    Stritt C; Wyler M; Gimmi EL; Pippel M; Roulin AC
    New Phytol; 2020 Sep; 227(6):1736-1748. PubMed ID: 31677277
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 76. LTR-retrotransposons and inter-retrotransposon amplified polymorphism (IRAP) analysis in Lilium species.
    Lee SI; Kim JH; Park KC; Kim NS
    Genetica; 2015 Jun; 143(3):343-52. PubMed ID: 25787319
    [TBL] [Abstract][Full Text] [Related]  

  • 77. BEL/Pao retrotransposons in metazoan genomes.
    de la Chaux N; Wagner A
    BMC Evol Biol; 2011 Jun; 11():154. PubMed ID: 21639932
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers.
    Friesen N; Brandes A; Heslop-Harrison JS
    Mol Biol Evol; 2001 Jul; 18(7):1176-88. PubMed ID: 11420359
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Genome relationships and LTR-retrotransposon diversity in three cultivated Capsicum L. (Solanaceae) species.
    de Assis R; Baba VY; Cintra LA; Gonçalves LSA; Rodrigues R; Vanzela ALL
    BMC Genomics; 2020 Mar; 21(1):237. PubMed ID: 32183698
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural features of the mdg1 lineage of the Ty3/gypsy group of LTR retrotransposons inferred from the phylogenetic analyses of its open reading frames.
    Costas J; Valadé E; Naveira H
    J Mol Evol; 2001 Sep; 53(3):165-71. PubMed ID: 11523003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.