These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18636448)

  • 1. Protein fouling during microfiltration: comparative behavior of different model proteins.
    Kelly ST; Zydney AL
    Biotechnol Bioeng; 1997 Jul; 55(1):91-100. PubMed ID: 18636448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration.
    Ho CC; Zydney AL
    J Colloid Interface Sci; 2000 Dec; 232(2):389-399. PubMed ID: 11097775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of intermolecular thiol-disulfide interchange reactions on bsa fouling during microfiltration.
    Kelly ST; Zydney AL
    Biotechnol Bioeng; 1994 Oct; 44(8):972-82. PubMed ID: 18618916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration.
    Palacio L; Ho CC; Zydney AL
    Biotechnol Bioeng; 2002 Aug; 79(3):260-70. PubMed ID: 12115414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration.
    Palecek SP; Zydney AL
    Biotechnol Prog; 1994; 10(2):207-13. PubMed ID: 7764678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein fouling of virus filtration membranes: effects of membrane orientation and operating conditions.
    Syedain ZH; Bohonak DM; Zydney AL
    Biotechnol Prog; 2006; 22(4):1163-9. PubMed ID: 16889394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of physical vs. chemical interactions in surface shear rheology.
    Wierenga PA; Kosters H; Egmond MR; Voragen AG; de Jongh HH
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):131-9. PubMed ID: 16445882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Adsorption and Deposition onto Microfiltration Membranes: The Role of Solute-Solid Interactions.
    Martínez F; Martín A; Prádanos P; Calvo JI; Palacio L; Hernández A
    J Colloid Interface Sci; 2000 Jan; 221(2):254-261. PubMed ID: 10631028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fouling dynamics in suspension flows.
    Shakib-Manesh A; Aström JA; Koponen A; Raiskinmäki P; Timonen J
    Eur Phys J E Soft Matter; 2002 Sep; 9(1):97-102. PubMed ID: 15010935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ three-dimensional characterization of membrane fouling by protein suspensions using multiphoton microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Langmuir; 2006 Jul; 22(14):6266-72. PubMed ID: 16800685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filtration method characterizing the reversibility of colloidal fouling layers at a membrane surface: analysis through critical flux and osmotic pressure.
    Espinasse B; Bacchin P; Aimar P
    J Colloid Interface Sci; 2008 Apr; 320(2):483-90. PubMed ID: 18279884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulations and theory of protein translocation.
    Makarov DE
    Acc Chem Res; 2009 Feb; 42(2):281-9. PubMed ID: 19072704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.
    Yeh IC; Lee MS; Olson MA
    J Phys Chem B; 2008 Nov; 112(47):15064-73. PubMed ID: 18959439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental mechanisms of three-component combined fouling with experimental verification.
    Kim AS; Contreras AE; Li Q; Yuan R
    Langmuir; 2009 Jul; 25(14):7815-27. PubMed ID: 19480394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore blocking mechanisms during early stages of membrane fouling by colloids.
    Wang F; Tarabara VV
    J Colloid Interface Sci; 2008 Dec; 328(2):464-9. PubMed ID: 18848335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fouling and protein adsorption. Effect of low-temperature plasma treatment of membrane surfaces.
    Johansson J; Yasuda HK; Bajpai RK
    Appl Biochem Biotechnol; 1998; 70-72():747-63. PubMed ID: 18576039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of soluble organic matters on membrane fouling index.
    Chuang SH; Chang WC; Chang MC; Sung MA
    Bioresour Technol; 2009 Mar; 100(5):1875-7. PubMed ID: 19006662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of organic and colloidal fouling on the removal of sulphamethoxazole by nanofiltration membranes.
    Nghiem LD; Espendiller C; Braun G
    Water Sci Technol; 2008; 58(1):163-9. PubMed ID: 18653950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.