These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18636487)

  • 1. Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation.
    Seelbach K; van Deurzen MP; van Rantwijk F; Sheldon RA; Kragl U
    Biotechnol Bioeng; 1997 Jul; 55(2):283-8. PubMed ID: 18636487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved operational stability of chloroperoxidase through use of antioxidants.
    Grey CE; Rundbäck F; Adlercreutz P
    J Biotechnol; 2008 Jun; 135(2):196-201. PubMed ID: 18479771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deactivation mechanisms of chloroperoxidase during biotransformations.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 Apr; 93(6):1190-5. PubMed ID: 16425305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme engineering aspects of biocatalysis: cofactor regeneration as example.
    Kragl U; Kruse W; Hummel W; Wandrey C
    Biotechnol Bioeng; 1996 Oct; 52(2):309-19. PubMed ID: 18629898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process development for the electroenzymatic synthesis of (R)-methylphenylsulfoxide by use of a 3-dimensional electrode.
    Lütz S; Vuorilehto K; Liese A
    Biotechnol Bioeng; 2007 Oct; 98(3):525-34. PubMed ID: 17390382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New reaction system for hydrocarbon oxidation by chloroperoxidase.
    Park JB; Clark DS
    Biotechnol Bioeng; 2006 May; 94(1):189-92. PubMed ID: 16276530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The production of (R)-2-hydroxy-1-phenyl-propan-1-one derivatives by benzaldehyde lyase from Pseudomonas fluorescens in a continuously operated membrane reactor.
    Hildebrand F; Kühl S; Pohl M; Vasic-Racki D; Müller M; Wandrey C; Lütz S
    Biotechnol Bioeng; 2007 Apr; 96(5):835-43. PubMed ID: 17029295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions.
    Cheong DY; Hansen CL
    Bioresour Technol; 2008 Jul; 99(11):5058-68. PubMed ID: 17981029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental optimization of a real time fed-batch fermentation process using Markov decision process.
    Saucedo VM; Karim MN
    Biotechnol Bioeng; 1997 Jul; 55(2):317-27. PubMed ID: 18636490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous production of chiral 1,3-butanediol using immobilized biocatalysts in a packed bed reactor: promising biocatalysis method with an asymmetric hydrogen-transfer bioreduction.
    Itoh N; Nakamura M; Inoue K; Makino Y
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1249-56. PubMed ID: 17443321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors.
    de Hoog HM; Nallani M; Cornelissen JJ; Rowan AE; Nolte RJ; Arends IW
    Org Biomol Chem; 2009 Nov; 7(22):4604-10. PubMed ID: 19865695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent.
    Sanfilippo C; D'Antona N; Nicolosi G
    Biotechnol Lett; 2004 Dec; 26(23):1815-9. PubMed ID: 15672220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous biogas production from fodder beet silage as sole substrate.
    Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A
    Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mass spectrometric investigation of native and oxidatively inactivated chloroperoxidase.
    Grey CE; Hedström M; Adlercreutz P
    Chembiochem; 2007 Jun; 8(9):1055-62. PubMed ID: 17492739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago.
    Kaup BA; Piantini U; Wüst M; Schrader J
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1087-96. PubMed ID: 17028875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability.
    Meinander NQ; Hahn-Hägerdal B
    Biotechnol Bioeng; 1997 May; 54(4):391-9. PubMed ID: 18634106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity.
    Nakamura Y; Kobayashi F; Ohnaga M; Sawada T
    Biotechnol Bioeng; 1997 Jan; 53(1):21-5. PubMed ID: 18629955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroperoxidase-catalyzed enantioselective oxidation of methyl phenyl sulfide with dihydroxyfumaric acid/oxygen or ascorbic acid/oxygen as oxidants.
    Pasta P; Carrea G; Monzani E; Gaggero N; Colonna S
    Biotechnol Bioeng; 1999 Feb; 62(4):489-493. PubMed ID: 10099556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic liquids as performance additives for electroenzymatic syntheses.
    Kohlmann C; Greiner L; Leitner W; Wandrey C; Lütz S
    Chemistry; 2009 Nov; 15(43):11692-700. PubMed ID: 19777513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.