These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18636487)

  • 21. Hypersensitive radical probe studies of chloroperoxidase-catalyzed hydroxylation reactions.
    Toy PH; Newcomb M; Hager LP
    Chem Res Toxicol; 1998 Jul; 11(7):816-23. PubMed ID: 9671545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase.
    Johannes TW; Woodyer RD; Zhao H
    Biotechnol Bioeng; 2007 Jan; 96(1):18-26. PubMed ID: 16948172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased t-PA yields using ultrafiltration of an inhibitory product from CHO fed-batch culture.
    Dowd JE; Kwok KE; Piret JM
    Biotechnol Prog; 2000; 16(5):786-94. PubMed ID: 11027171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cutinase inhibition by means of insecticidal organophosphates and carbamates. 3. Oxidation of phosphorothionates by chloroperoxidase from Caldariomyces fumago.
    Walz I; Schwack W
    J Agric Food Chem; 2007 Oct; 55(20):8177-86. PubMed ID: 17824663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.
    Ezeji TC; Qureshi N; Blaschek HP
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey.
    Damasceno LH; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E
    J Environ Manage; 2007 Dec; 85(4):927-35. PubMed ID: 17184897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective separation of amino acids with a charged inorganic nanofiltration membrane: effect of physicochemical parameters on selectivity.
    Garem A; Daufin G; Maubois JL; Léonil J
    Biotechnol Bioeng; 1997 May; 54(4):291-302. PubMed ID: 18634095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.
    Che CM; Yip WP; Yu WY
    Chem Asian J; 2006 Sep; 1(3):453-8. PubMed ID: 17441082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of phenolic compounds on hydrothermal oxidation of cellulose.
    Jin F; Cao J; Kishida H; Moriya T; Enomoto H
    Carbohydr Res; 2007 Jun; 342(8):1129-32. PubMed ID: 17336951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation.
    Mascolo G; Ciannarella R; Balest L; Lopez A
    J Hazard Mater; 2008 Apr; 152(3):1138-45. PubMed ID: 17890002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pilot scale processing of detergent-based aqueous two-phase systems.
    Minuth T; Gieren H; Pape U; Raths HC; Thömmes J; Kula MR
    Biotechnol Bioeng; 1997 Jul; 55(2):339-47. PubMed ID: 18636492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances.
    van Can HJ; Te Braake HA; Hellinga C; Luyben KC
    Biotechnol Bioeng; 1997 Jun; 54(6):549-66. PubMed ID: 18636411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylation of pea isolate in a torus microreactor.
    Legrand J; Guéguen J; Berot S; Popineau Y; Nouri L
    Biotechnol Bioeng; 1997 Feb; 53(4):409-14. PubMed ID: 18634031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous and Batch Production of Chloroperoxidase by Mycelial Pellets of Caldariomyces fumago in an Airlift Fermentor.
    Carmichael RD; Pickard MA
    Appl Environ Microbiol; 1989 Jan; 55(1):17-20. PubMed ID: 16347819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peptide condensation activity of a neutral protease from Vibrio sp. T1800 (Vimelysin).
    Kunugi S; Koyasu A; Takahashi S; Oda K
    Biotechnol Bioeng; 1997 Feb; 53(4):387-90. PubMed ID: 18634027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Draft Genome Sequence of the Chloroperoxidase-Producing Fungus Caldariomyces fumago Woronichin DSM1256.
    Kellner H; Pecyna MJ; Buchhaupt M; Ullrich R; Hofrichter M
    Genome Announc; 2016 Aug; 4(4):. PubMed ID: 27491999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semicontinuous and Continuous Production of Chloroperoxidase by Caldariomyces fumago Immobilized in k-Carrageenan.
    Carmichael RD; Jones A; Pickard MA
    Appl Environ Microbiol; 1986 Feb; 51(2):276-80. PubMed ID: 16346984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric Sulfoxidation Catalyzed by a Vanadium-Containing Bromoperoxidase.
    Andersson M; Willetts A; Allenmark S
    J Org Chem; 1997 Nov; 62(24):8455-8458. PubMed ID: 11671985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biocatalytic route towards rose oxide using chloroperoxidase.
    Piantini U; Schrader J; Wawrzun A; Wüst M
    Food Chem; 2011 Dec; 129(3):1025-9. PubMed ID: 25212332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.