These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18636495)

  • 1. Selection of salt hydrate pairs for use in water control in enzyme catalysis in organic solvents.
    Zacharis E; Omar IC; Partridge J; Robb DA; Halling PJ
    Biotechnol Bioeng; 1997 Jul; 55(2):367-74. PubMed ID: 18636495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt hydrates for in situ water activity control have acid-base effects on enzymes in nonaqueous media.
    Fontes N; Harper N; Halling PJ; Barreiros S
    Biotechnol Bioeng; 2003 Jun; 82(7):802-8. PubMed ID: 12701146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic catalysis in cosolvent modified pressurized organic solvents.
    Sarkari M; Knutson BL; Chen CS
    Biotechnol Bioeng; 1999 Nov; 65(3):258-64. PubMed ID: 10486123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized dendritic polybenzylethers as acid/base buffers for biocatalysis in nonpolar solvents.
    Dolman M; Thalling PJ; Moore BD
    Biotechnol Bioeng; 1997 Jul; 55(2):278-82. PubMed ID: 18636486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipase-catalyzed transesterification in organic media: solvent effects on equilibrium and individual rate constants.
    García-Alles LF; Gotor V
    Biotechnol Bioeng; 1998 Sep; 59(6):684-94. PubMed ID: 10099389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided control of water activity for lipase-catalyzed esterification in solvent-free systems.
    Won K; Lee SB
    Biotechnol Prog; 2001; 17(2):258-64. PubMed ID: 11312702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of salt hydrate pair on lipase-catalyzed regioselective monoacylation of sucrose.
    Kim JE; Han JJ; Yoon JH; Rhee JS
    Biotechnol Bioeng; 1998 Jan; 57(1):121-5. PubMed ID: 10099186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of salt hydrate pairs to control water activity for enzyme catalysis in ionic liquids.
    Berberich JA; Kaar JL; Russell AJ
    Biotechnol Prog; 2003; 19(3):1029-32. PubMed ID: 12790674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic synthesis of sorbitan esters using a low-boiling-point azeotrope as a reaction solvent.
    Sarney DB; Barnard MJ; Virto M; Vulfson EN
    Biotechnol Bioeng; 1997 May; 54(4):351-6. PubMed ID: 18634102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of immobilization support, water activity, and enzyme ionization state on cutinase activity and enantioselectivity in organic media.
    Vidinha P; Harper N; Micaelo NM; Lourenco NM; da Silva MD; Cabral JM; Afonso CA; Soares CM; Barreiros S
    Biotechnol Bioeng; 2004 Feb; 85(4):442-9. PubMed ID: 14755562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel preparation method for surfactant-lipase complexes utilizing water in oil emulsions.
    Okazaki SY; Kamiya N; Abe K; Goto M; Nakashio F
    Biotechnol Bioeng; 1997 Jul; 55(2):455-60. PubMed ID: 18636504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent.
    Deschrevel B; Vincent JC; Ripoll C; Thellier M
    Biotechnol Bioeng; 2003 Jan; 81(2):167-77. PubMed ID: 12451553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation of CBZ-amino acid nitrophenyl esters in organic media and the kinetics of their transesterification by subtilisin.
    Reimann A; Robb DA; Halling PJ
    Biotechnol Bioeng; 1994 May; 43(11):1081-6. PubMed ID: 18615519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipase kinetics in organic-water solvent with amphipathic substrate for chiral reaction.
    Mohapatra SC; Hsu JT
    Biotechnol Bioeng; 1997 Jul; 55(2):399-407. PubMed ID: 18636498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water activity effects on geranyl acetate synthesis catalyzed by novozym in supercritical ethane and in supercritical carbon dioxide.
    Peres C; Gomes da Silva MD; Barreiros S
    J Agric Food Chem; 2003 Mar; 51(7):1884-8. PubMed ID: 12643646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do organic solvents affect the catalytic properties of lipase? Intrinsic kinetic parameters of lipases in ester hydrolysis and formation in various organic solvents.
    van Tol JB; Stevens RM; Veldhuizen WJ; Jongejan JA; Duine JA
    Biotechnol Bioeng; 1995 Jul; 47(1):71-81. PubMed ID: 18623368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new irreversible enzyme-aided esterification method in organic solvents.
    Jeromin GE; Zoor A
    Biotechnol Lett; 2008 May; 30(5):925-8. PubMed ID: 18196460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent effects on biocatalysis in organic systems: equilibrium position and rates of lipase catalyzed esterification.
    Valivety RH; Johnston GA; Suckling CJ; Halling PJ
    Biotechnol Bioeng; 1991 Dec; 38(10):1137-43. PubMed ID: 18600708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the nature of modifier in the enzymatic activity of chemical modified semipurified lipase from Candida rugosa.
    Hernáiz MJ; Sánchez-Montero JM; Sinisterra JV
    Biotechnol Bioeng; 1997 Jul; 55(2):252-60. PubMed ID: 18636483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of lipase-catalysed ester and lactone synthesis in low-water systems: analysis of optimum water activity.
    Alston MJ; Freedman RB
    Biotechnol Bioeng; 2002 Mar; 77(6):641-50. PubMed ID: 11807759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.