These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18636511)

  • 21. Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia.
    Enman J; Hodge D; Berglund KA; Rova U
    J Agric Food Chem; 2008 Apr; 56(8):2609-12. PubMed ID: 18363329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of pellet characteristics on L-lactic acid fermentation by Rhizopus oryzae].
    Zhang H; Huang Y; Fu Y
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):372-8. PubMed ID: 26065280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative characterization of L-lactic acid-producing thermotolerant Rhizopus fungi.
    Kitpreechavanich V; Maneeboon T; Kayano Y; Sakai K
    J Biosci Bioeng; 2008 Dec; 106(6):541-6. PubMed ID: 19134548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of l(+)-lactic acid production using acid-adapted precultures of Rhizopus arrhizus in a bubble column reactor.
    Zhang ZY; Jin B; Kelly JM
    J Biosci Bioeng; 2009 Oct; 108(4):344-7. PubMed ID: 19716526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production.
    Coban HB; Demirci A
    Bioprocess Biosyst Eng; 2016 Feb; 39(2):323-30. PubMed ID: 26658984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae.
    Oda Y; Saito K; Yamauchi H; Mori M
    Curr Microbiol; 2002 Jul; 45(1):1-4. PubMed ID: 12029519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of pellet characteristics on L-lactic acid fermentation by R. oryzae: pellet morphology, diameter, density, and interior structure.
    Fu YQ; Yin LF; Zhu HY; Jiang R; Li S; Xu Q
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2019-30. PubMed ID: 25163881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase.
    Teng Y; Xu Y; Wang D
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):397-405. PubMed ID: 18779980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.
    Kwak MY; Rhee JS
    Biotechnol Bioeng; 1992 Apr; 39(9):903-6. PubMed ID: 18601027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative proteomic analysis of
    Yin L; Luo X; Zhang Y; Zheng W; Yin F; Fu Y
    3 Biotech; 2020 Nov; 10(11):469. PubMed ID: 33088665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material - dairy manure - using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344.
    Liao W; Liu Y; Frear C; Chen S
    Bioresour Technol; 2008 Sep; 99(13):5859-66. PubMed ID: 18006305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196.
    Miura S; Dwiarti L; Arimura T; Hoshino M; Tiejun L; Okabe M
    J Biosci Bioeng; 2004; 97(1):19-23. PubMed ID: 16233583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of fumaric acid by immobilized rhizopus using rotary biofilm contactor.
    Cao N; Du J; Chen C; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1997; 63-65():387-94. PubMed ID: 18576097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina.
    Park EY; Koike Y; Higashiyama K; Fujikawa S; Okabe M
    J Biosci Bioeng; 1999; 88(1):61-7. PubMed ID: 16232575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhizopus oryzae fungus cells producing L(+)-lactic acid: kinetic and metabolic parameters of free and PVA-cryogel-entrapped mycelium.
    Efremenko E; Spiricheva O; Varfolomeyev S; Lozinsky V
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):480-5. PubMed ID: 16523285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones.
    Chatterjee S; Chatterjee S; Chatterjee BP; Guha AK
    Int J Biol Macromol; 2008 Mar; 42(2):120-6. PubMed ID: 18023862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Confining mycelial growth to porous microbeads: a novel technique to alter the morphology of non-newtonian mycelial cultures.
    Gbewonyo K; Wang DI
    Biotechnol Bioeng; 1983 Apr; 25(4):967-83. PubMed ID: 18548712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mycelial pellet formation by Rhizopus oryzae ATCC 20344.
    Zhou Y; Du J; Tsao GT
    Appl Biochem Biotechnol; 2000; 84-86():779-89. PubMed ID: 10849836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes.
    Büyükkileci AO; Hamamci H; Yucel M
    J Biosci Bioeng; 2006 Nov; 102(5):464-6. PubMed ID: 17189176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of physiological factors for direct saccharification of cassava starch to glucose by Rhizopus oligosporus 145f.
    Garg SK; Doelle HW
    Biotechnol Bioeng; 1989 Mar; 33(8):948-54. PubMed ID: 18588008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.