These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1863659)

  • 21. A model for direction selectivity in threshold motion perception.
    Wilson HR
    Biol Cybern; 1985; 51(4):213-22. PubMed ID: 3970982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the spatio-temporal structure of optical flow on postural readjustments in man.
    Masson G; Mestre DR; Pailhous J
    Exp Brain Res; 1995; 103(1):137-50. PubMed ID: 7615029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postural responses to target jumps and background motion in a fast pointing task.
    Zhang Y; Brenner E; Duysens J; Verschueren S; Smeets JBJ
    Exp Brain Res; 2018 Jun; 236(6):1573-1581. PubMed ID: 29572649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neural network model for visual motion detection that can explain psychophysical and neurophysiological phenomena.
    Hirahara M; Nagano T
    Biol Cybern; 1993; 68(3):247-52. PubMed ID: 8452894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monocular vision and increased distance reducing the effects of visual manipulation on body sway.
    Moraes R; Lopes AG; Barela JA
    Neurosci Lett; 2009 Sep; 460(3):209-13. PubMed ID: 19501130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling between visual information and body sway in adults with Down syndrome.
    Gomes MM; Moraes R; Barela JA
    Res Dev Disabil; 2016 Nov; 58():9-19. PubMed ID: 27587352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical area MSTd combines visual cues to represent 3-D self-movement.
    Logan DJ; Duffy CJ
    Cereb Cortex; 2006 Oct; 16(10):1494-507. PubMed ID: 16339087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postural adjustment response to depth direction moving patterns produced by virtual reality graphics.
    Kuno S; Kawakita T; Kawakami O; Miyake Y; Watanabe S
    Jpn J Physiol; 1999 Oct; 49(5):417-24. PubMed ID: 10603425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual contribution to postural stability: Interaction between target fixation or tracking and static or dynamic large-field stimulus.
    Laurens J; Awai L; Bockisch CJ; Hegemann S; van Hedel HJ; Dietz V; Straumann D
    Gait Posture; 2010 Jan; 31(1):37-41. PubMed ID: 19775892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual influence on postural control, with and without visual motion feedback.
    Hafström A; Fransson PA; Karlberg M; Ledin T; Magnusson M
    Acta Otolaryngol; 2002 Jun; 122(4):392-7. PubMed ID: 12125995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The visual control of stability in children and adults: postural readjustments in a ground optical flow.
    Baumberger B; Isableu B; Flückiger M
    Exp Brain Res; 2004 Nov; 159(1):33-46. PubMed ID: 15372130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.
    Rosenblatt SD; Crane BT
    PLoS One; 2015; 10(11):e0142109. PubMed ID: 26536235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction of motion parallax structure in the visual system. II.
    Werkhoven P; Koenderink JJ
    Biol Cybern; 1990; 63(3):193-9. PubMed ID: 2390533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.
    Buchanan JJ
    Adv Exp Med Biol; 2016; 957():209-228. PubMed ID: 28035568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of adaptive sensorimotor control in infant sitting posture.
    Chen LC; Jeka J; Clark JE
    Gait Posture; 2016 Mar; 45():157-63. PubMed ID: 26979899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postural time-to-contact as a precursor of visually induced motion sickness.
    Li R; Walter H; Curry C; Rath R; Peterson N; Stoffregen TA
    Exp Brain Res; 2018 Jun; 236(6):1631-1641. PubMed ID: 29589080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational analyses for illusory transformations in the optic flow field and heading perception in the presence of moving objects.
    Hanada M
    Vision Res; 2005 Mar; 45(6):749-58. PubMed ID: 15639501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model using MT-like motion-opponent operators explains an illusory transformation in the optic flow field.
    Royden CS; Conti DM
    Vision Res; 2003 Dec; 43(26):2811-26. PubMed ID: 14568097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow structure versus retinal location in the optical control of stance.
    Stoffregen TA
    J Exp Psychol Hum Percept Perform; 1985 Oct; 11(5):554-65. PubMed ID: 2932530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.