BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18636747)

  • 1. Interacting targets of the farnesyl of transducin gamma-subunit.
    Katadae M; Hagiwara K; Wada A; Ito M; Umeda M; Casey PJ; Fukada Y
    Biochemistry; 2008 Aug; 47(32):8424-33. PubMed ID: 18636747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the molecular interaction of the farnesyl moiety of transducin through the use of a photoreactive farnesyl analogue.
    Hagiwara K; Wada A; Katadae M; Ito M; Ohya Y; Casey PJ; Fukada Y
    Biochemistry; 2004 Jan; 43(2):300-9. PubMed ID: 14717583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of transducin photoaffinity labeling with the specific formation of intermolecular disulfide linkages in its α-subunit.
    Perdomo D; Möller C; Bubis J
    Biochimie; 2015 Jan; 108():120-32. PubMed ID: 25450251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitylation of the transducin betagamma subunit complex. Regulation by phosducin.
    Obin M; Lee BY; Meinke G; Bohm A; Lee RH; Gaudet R; Hopp JA; Arshavsky VY; Willardson BM; Taylor A
    J Biol Chem; 2002 Nov; 277(46):44566-75. PubMed ID: 12215439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of the inhibition of transducin function by farnesylcysteine analogs.
    Parish CA; Brazil DP; Rando RR
    Biochemistry; 1997 Mar; 36(9):2686-93. PubMed ID: 9054576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top-down analysis of protein isoprenylation by electrospray ionization hybrid quadrupole time-of-flight tandem mass spectrometry; the mouse Tgamma protein.
    Kassai H; Satomi Y; Fukada Y; Takao T
    Rapid Commun Mass Spectrom; 2005; 19(2):269-74. PubMed ID: 15609361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of functionally important cysteines in the alpha-subunit of transducin by chemical cross-linking techniques.
    Millán EJ; Bubis J
    J Protein Chem; 2002 Jan; 21(1):1-8. PubMed ID: 11902663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of interactions between transducin alpha/beta gamma-subunits and lipid membranes.
    Matsuda T; Takao T; Shimonishi Y; Murata M; Asano T; Yoshizawa T; Fukada Y
    J Biol Chem; 1994 Dec; 269(48):30358-63. PubMed ID: 7982949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Farnesylation of retinal transducin underlies its translocation during light adaptation.
    Kassai H; Aiba A; Nakao K; Nakamura K; Katsuki M; Xiong WH; Yau KW; Imai H; Shichida Y; Satomi Y; Takao T; Okano T; Fukada Y
    Neuron; 2005 Aug; 47(4):529-39. PubMed ID: 16102536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol-dependent association of caveolin-1 with the transducin alpha subunit in bovine photoreceptor rod outer segments: disruption by cyclodextrin and guanosine 5'-O-(3-thiotriphosphate).
    Elliott MH; Fliesler SJ; Ghalayini AJ
    Biochemistry; 2003 Jul; 42(26):7892-903. PubMed ID: 12834341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific isoprenyl group linked to transducin gamma-subunit is a determinant of its unique signaling properties among G-proteins.
    Matsuda T; Hashimoto Y; Ueda H; Asano T; Matsuura Y; Doi T; Takao T; Shimonishi Y; Fukada Y
    Biochemistry; 1998 Jul; 37(27):9843-50. PubMed ID: 9657698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoprenylation/methylation and transducin function.
    Parish CA; Rando RR
    Methods Enzymol; 2000; 316():451-64. PubMed ID: 10800694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carboxyl methylation of photoreceptor G protein gamma-subunit in visual transduction.
    Fukada Y; Matsuda T; Kokame K; Takao T; Shimonishi Y; Akino T; Yoshizawa T
    J Biol Chem; 1994 Feb; 269(7):5163-70. PubMed ID: 8106497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone photoreceptor betagamma-transducin: posttranslational modification and interaction with phosducin.
    Chen F; Ng PS; Faull KF; Lee RH
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4622-9. PubMed ID: 14578377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin activation exposes a key hydrophobic binding site for the transducin alpha-subunit C terminus.
    Janz JM; Farrens DL
    J Biol Chem; 2004 Jul; 279(28):29767-73. PubMed ID: 15070895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin controls a conformational switch on the transducin gamma subunit.
    Kisselev OG; Downs MA
    Structure; 2003 Apr; 11(4):367-73. PubMed ID: 12679015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin.
    Mazzoni MR; Hamm HE
    J Biol Chem; 1996 Nov; 271(47):30034-40. PubMed ID: 8939950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxyl methylation and farnesylation of transducin gamma-subunit synergistically enhance its coupling with metarhodopsin II.
    Ohguro H; Fukada Y; Takao T; Shimonishi Y; Yoshizawa T; Akino T
    EMBO J; 1991 Dec; 10(12):3669-74. PubMed ID: 1935895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residues within the polycationic region of cGMP phosphodiesterase gamma subunit crucial for the interaction with transducin alpha subunit. Identification by endogenous ADP-ribosylation and site-directed mutagenesis.
    Bondarenko VA; Desai M; Dua S; Yamazaki M; Amin RH; Yousif KK; Kinumi T; Ohashi M; Komori N; Matsumoto H; Jackson KW; Hayashi F; Usukura J; Lipkin VM; Yamazaki A
    J Biol Chem; 1997 Jun; 272(25):15856-64. PubMed ID: 9188484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.