These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18637349)

  • 1. [Dechlorination mechanisms of chlorinated hydrocarbons by supported nanoscale Pd/Fe].
    Li ZL; Yang Q; Shang HT; Xi HB; Hao CB
    Huan Jing Ke Xue; 2008 Apr; 29(4):978-84. PubMed ID: 18637349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Reductive dechlorination of chlorinated hydrocarbons in water by Ag/Fe catalytic reduction system].
    Wu DL; Wang HW; Ma LM
    Huan Jing Ke Xue; 2006 Sep; 27(9):1802-7. PubMed ID: 17117636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions.
    Parshetti GK; Doong RA
    Chemosphere; 2012 Jan; 86(4):392-9. PubMed ID: 22115467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective dechlorination of HCB by nanoscale Cu/Fe particles.
    Zhu N; Luan H; Yuan S; Chen J; Wu X; Wang L
    J Hazard Mater; 2010 Apr; 176(1-3):1101-5. PubMed ID: 19969417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the dechlorination mechanisms and Ni release styles of chloroalkane and chloroalkene removal using nickel/iron nanoparticles.
    Zhang W; Jia N; Han X; Qiu Z; Lv S; Lin K; Ying W
    Environ Technol; 2016 Aug; 37(16):2088-98. PubMed ID: 26776083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe(zero-valent) particles supported on chitosan and silica.
    Zhu BW; Lim TT; Feng J
    Chemosphere; 2006 Nov; 65(7):1137-45. PubMed ID: 16735054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles.
    Wang X; Chen C; Chang Y; Liu H
    J Hazard Mater; 2009 Jan; 161(2-3):815-23. PubMed ID: 18513856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions.
    Barnes RJ; Riba O; Gardner MN; Scott TB; Jackman SA; Thompson IP
    Chemosphere; 2010 Apr; 79(4):448-54. PubMed ID: 20156632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.
    Lee W; Batchelor B
    Chemosphere; 2004 Sep; 56(10):999-1009. PubMed ID: 15268967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mixing on reductive dechlorination of persistent organic pollutants by Fe/Pd nanoparticles.
    Moujahid A; Bang JJ; Yan F
    Water Environ Res; 2019 Mar; 91(3):198-207. PubMed ID: 30710401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite.
    Lee W; Batchelor B
    Environ Sci Technol; 2002 Dec; 36(23):5147-54. PubMed ID: 12523432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Degradation of highly-chlorinated benzenes by nanoscale iron and palladized iron in aqueous system].
    Li J; Wang F; Yang XL; Gu CG; Zhang YP; Jiang X
    Huan Jing Ke Xue; 2011 Mar; 32(3):692-8. PubMed ID: 21634165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of chlorinated methanes with nano-scale Fe particles: effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction.
    Feng J; Zhu BW; Lim TT
    Chemosphere; 2008 Dec; 73(11):1817-23. PubMed ID: 18809199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle.
    Chen C; Wang X; Chang Y; Liu H
    J Environ Sci (China); 2008; 20(8):945-51. PubMed ID: 18817073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries.
    Jung B; Batchelor B
    J Hazard Mater; 2008 Mar; 152(1):62-70. PubMed ID: 17707584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive dechlorination pathways of tetrachloroethylene and trichloroethylene and subsequent transformation of their dechlorination products by mackinawite (FeS) in the presence of metals.
    Jeong HY; Kim H; Hayes KF
    Environ Sci Technol; 2007 Nov; 41(22):7736-43. PubMed ID: 18075082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.