BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18637411)

  • 1. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response.
    Zhang F; Boettcher FA
    J Am Acad Audiol; 2008 Jan; 19(1):82-94. PubMed ID: 18637411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaural frequency mismatch jointly modulates neural brainstem binaural interaction and behavioral interaural time difference sensitivity in humans.
    Sammeth CA; Brown AD; Greene NT; Tollin DJ
    Hear Res; 2023 Sep; 437():108839. PubMed ID: 37429100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent or integrated processing of interaural time and level differences in human auditory cortex?
    Altmann CF; Terada S; Kashino M; Goto K; Mima T; Fukuyama H; Furukawa S
    Hear Res; 2014 Jun; 312():121-7. PubMed ID: 24709274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component.
    Haywood NR; Undurraga JA; Marquardt T; McAlpine D
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope.
    Hu H; Ewert SD; Kollmeier B; Vickers D
    PeerJ; 2024; 12():e17104. PubMed ID: 38680894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hearing with Two Ears: Evidence for Cortical Binaural Interaction during Auditory Processing.
    Henkin Y; Yaar-Soffer Y; Givon L; Hildesheimer M
    J Am Acad Audiol; 2015 Apr; 26(4):384-92. PubMed ID: 25879242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.
    Laumen G; Tollin DJ; Beutelmann R; Klump GM
    Hear Res; 2016 Jul; 337():46-58. PubMed ID: 27173973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normative Study of the Binaural Interaction Component of the Human Auditory Brainstem Response as a Function of Interaural Time Differences.
    Sammeth CA; Greene NT; Brown AD; Tollin DJ
    Ear Hear; 2021; 42(3):629-643. PubMed ID: 33141776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binaural interaction in the auditory brainstem response: a normative study.
    Van Yper LN; Vermeire K; De Vel EF; Battmer RD; Dhooge IJ
    Clin Neurophysiol; 2015 Apr; 126(4):772-9. PubMed ID: 25240247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human auditory steady state responses to binaural and monaural beats.
    Schwarz DW; Taylor P
    Clin Neurophysiol; 2005 Mar; 116(3):658-68. PubMed ID: 15721080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.
    Altmann CF; Ueda R; Bucher B; Furukawa S; Ono K; Kashino M; Mima T; Fukuyama H
    Neuroimage; 2017 Oct; 159():185-194. PubMed ID: 28756239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.
    Ross B
    J Neurophysiol; 2008 Sep; 100(3):1265-77. PubMed ID: 18632891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Between-ear sound frequency disparity modulates a brain stem biomarker of binaural hearing.
    Brown AD; Anbuhl KL; Gilmer JI; Tollin DJ
    J Neurophysiol; 2019 Sep; 122(3):1110-1122. PubMed ID: 31314646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses.
    Junius D; Riedel H; Kollmeier B
    Hear Res; 2007 Mar; 225(1-2):91-104. PubMed ID: 17270375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and electrophysiologic binaural processing in persons with symmetric hearing loss.
    Leigh-Paffenroth ED; Roup CM; Noe CM
    J Am Acad Audiol; 2011 Mar; 22(3):181-93; quiz 194-5. PubMed ID: 21545770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binaural interaction component and white-noise enhancement in middle latency responses: differential effects of anaesthesia in guinea pigs.
    Goksoy C; Utkucal R
    Exp Brain Res; 2000 Feb; 130(3):410-4. PubMed ID: 10706439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.