These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18638184)

  • 1. Spatially resolved cathodoluminescence of luminescent materials using an EDX detector.
    Smet PF; Van Haecke JE; Poelman D
    J Microsc; 2008 Jul; 231(Pt 1):1-8. PubMed ID: 18638184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration Specimens for Determining Energy-Dispersive X-ray k-Factors of Boron, Nitrogen, Oxygen, and Fluorine.
    Malac M; Egerton RF
    Microsc Microanal; 1999 Jan; 5(1):29-38. PubMed ID: 10227824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source.
    Kunz M; Tamura N; Chen K; MacDowell AA; Celestre RS; Church MM; Fakra S; Domning EE; Glossinger JM; Kirschman JL; Morrison GY; Plate DW; Smith BV; Warwick T; Yashchuk VV; Padmore HA; Ustundag E
    Rev Sci Instrum; 2009 Mar; 80(3):035108. PubMed ID: 19334953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral mapping-combining cathodoluminescence and X-ray collection in an electron microprobe.
    Macrae CM; Wilson NC; Johnson SA; Phillips PL; Otsuki M
    Microsc Res Tech; 2005 Aug; 67(5):271-7. PubMed ID: 16170823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of V-defects in InGaN single quantum well films at the nanometer level by high-spatial-resolution cathodoluminescence spectroscopy.
    Yoshikawa M; Murakami M; Ishida H; Harima H
    Appl Spectrosc; 2008 Jan; 62(1):86-90. PubMed ID: 18230213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathodoluminescence investigation of organic materials.
    Niitsuma J; Oikawa H; Kimura E; Ushiki T; Sekiguchi T
    J Electron Microsc (Tokyo); 2005 Aug; 54(4):325-30. PubMed ID: 16123064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New methods for cathodoluminescence in the scanning electron microscope.
    Boyde A; Reid SA
    Scan Electron Microsc; 1983; (Pt 4):1803-14. PubMed ID: 6669948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibility of scanning electron microscope observation and energy dispersive X-ray analysis in microscale region of insulating samples using diluted ionic liquid.
    Imashuku S; Kawakami T; Ze L; Kawai J
    Microsc Microanal; 2012 Apr; 18(2):365-70. PubMed ID: 22364683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in situ heating TEM analysis method for an interface reaction.
    Tanigaki T; Ito K; Nagakubo Y; Asakawa T; Kanemura T
    J Electron Microsc (Tokyo); 2009 Oct; 58(5):281-7. PubMed ID: 19376815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-optic Based Spectral Cathodoluminescence: Simple and Economic Option for Use in Conventional and Environmental Scanning Electron Microscopy.
    Griffin BJ; Browne JR
    Microsc Microanal; 2000 Jan; 6(1):42-48. PubMed ID: 10675442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathodoluminescence in transmission electron microscopy.
    Strunk HP; Albrecht M; Scheel H
    J Microsc; 2006 Oct; 224(Pt 1):79-85. PubMed ID: 17100912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous formation of micrometer-size inorganic peapods.
    Roy S; Rijneveld-Ockers MT; Groenewold J; Kuipers BW; Meeldijk H; Kegel WK
    Langmuir; 2007 May; 23(10):5292-5. PubMed ID: 17408300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring hydrothermally grown potassium titanate fibers by STEM-in-SEM/EDX and XRD.
    Habicht W; Boukis N; Franz G; Walter O; Dinjus E
    Microsc Microanal; 2006 Aug; 12(4):322-6. PubMed ID: 16842646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray analysis and mapping by wavelength dispersive X-ray spectroscopy in an electron microscope.
    Tanaka M; Takeguchi M; Furuya K
    Ultramicroscopy; 2008 Oct; 108(11):1427-31. PubMed ID: 18644673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of waveguiding properties of gallium oxide nanostructures by angle resolved cathodoluminescence in a scanning electron microscope.
    Nogales E; Méndez B; Piqueras J
    Ultramicroscopy; 2011 Jul; 111(8):1037-42. PubMed ID: 21740866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative cathodoluminescence mapping with application to a Kalgoorlie scheelite.
    MacRae CM; Wilson NC; Brugger J
    Microsc Microanal; 2009 Jun; 15(3):222-30. PubMed ID: 19460178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Dark Side of EDX Tomography: Modeling Detector Shadowing to Aid 3D Elemental Signal Analysis.
    Yeoh CS; Rossouw D; Saghi Z; Burdet P; Leary RK; Midgley PA
    Microsc Microanal; 2015 Jun; 21(3):759-64. PubMed ID: 25790959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.
    Daniels JE; Drakopoulos M
    J Synchrotron Radiat; 2009 Jul; 16(Pt 4):463-8. PubMed ID: 19535858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the gamma-ray sensitivity and signal-to-noise ratio of a new scattered-electron detector.
    Xia L; Ouyang X; Wang Q; Kang K; Tan X
    Rev Sci Instrum; 2008 Sep; 79(9):093303. PubMed ID: 19044403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transmission electron microscopy study of Fe-Co alloy nanoparticles in silica aerogel matrix using HREM, EDX, and EELS.
    Falqui A; Corrias A; Gass M; Mountjoy G
    Microsc Microanal; 2009 Apr; 15(2):114-24. PubMed ID: 19284893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.