These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 18638188)
1. Application of elemental microanalysis to elucidate the role of spherites in the digestive gland of the helicid snail Chilostoma lefeburiana. Delakorda SL; Letofsky-Papst I; Novak T; Giovannelli M; Hofer F; Pabst MA J Microsc; 2008 Jul; 231(Pt 1):38-46. PubMed ID: 18638188 [TBL] [Abstract][Full Text] [Related]
2. The evidence on the degradation processes in the midgut epithelial cells of the larval antlion Euroleon nostras (Geoffroy in Fourcroy, 1785) (Myrmeleontidae, Neuroptera). Lipovšek S; Letofsky-Papst I; Hofer F; Leitinger G; Devetak D Micron; 2012 Apr; 43(5):651-65. PubMed ID: 22236559 [TBL] [Abstract][Full Text] [Related]
3. Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Lipovšek S; Letofsky-Papst I; Hofer F; Pabst MA; Devetak D Microsc Res Tech; 2012 Apr; 75(4):397-407. PubMed ID: 21898669 [TBL] [Abstract][Full Text] [Related]
4. Structure of the Malpighian tubule cells and annual changes in the structure and chemical composition of their spherites in the cave cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria). Lipovsek Delakorda S; Letofsky-Papst I; Novak T; Hofer F; Pabst MA Arthropod Struct Dev; 2009 Jul; 38(4):315-27. PubMed ID: 19303052 [TBL] [Abstract][Full Text] [Related]
5. Ultrastructure of spherites in the midgut diverticula and Malpighian tubules of the harvestman Amilenus aurantiacus during the winter diapause. Lipovšek S; Novak T; Dariš B; Hofer F; Leitinger G; Letofsky-Papst I Histochem Cell Biol; 2022 Jan; 157(1):107-118. PubMed ID: 34738145 [TBL] [Abstract][Full Text] [Related]
6. Analytical electron microscopy as a powerful tool in plant cell biology: examples using electron energy loss spectroscopy and X-ray microanalysis. Lichtenberger O; Neumann D Eur J Cell Biol; 1997 Aug; 73(4):378-86. PubMed ID: 9270881 [TBL] [Abstract][Full Text] [Related]
7. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens. Kapp N; Studer D; Gehr P; Geiser M Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763 [TBL] [Abstract][Full Text] [Related]
8. Seasonal- and age-dependent changes of the structure and chemical composition of the spherites in the midgut gland of the harvestmen Gyas annulatus (Opiliones). Lipovsek S; Letofsky-Papst I; Hofer F; Pabst MA Micron; 2002; 33(7-8):647-54. PubMed ID: 12475561 [TBL] [Abstract][Full Text] [Related]
9. Ultrastructure and composition of asteroid bodies. Winkler J; Lünsdorf H Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):902-7. PubMed ID: 11274065 [TBL] [Abstract][Full Text] [Related]
10. Effects of H+ concentration on amorphous mineral granules: structural stability and elemental mobilization. Corrêa JD; Bruno MI; Allodi S; Farina M J Struct Biol; 2009 Apr; 166(1):59-66. PubMed ID: 19138745 [TBL] [Abstract][Full Text] [Related]
11. Cryo-X-ray analysis-A novel tool to better understand the physicochemical reactions at the bioglass/biological fluid interface. Balamurugan A; Benhayoune H; Kannan S; Laquerriere P; Michel J; Balossier G; Ferreira JM Microsc Res Tech; 2008 Sep; 71(9):684-8. PubMed ID: 18615562 [TBL] [Abstract][Full Text] [Related]
12. Quantitative chemical analysis of ocular melanosomes in stained and non-stained tissues. Biesemeier A; Schraermeyer U; Eibl O Micron; 2011 Jul; 42(5):461-70. PubMed ID: 21330141 [TBL] [Abstract][Full Text] [Related]
13. Calibration Specimens for Determining Energy-Dispersive X-ray k-Factors of Boron, Nitrogen, Oxygen, and Fluorine. Malac M; Egerton RF Microsc Microanal; 1999 Jan; 5(1):29-38. PubMed ID: 10227824 [TBL] [Abstract][Full Text] [Related]
14. Biological applications of energy-filtered TEM. Saunders M; Shaw JA Methods Mol Biol; 2014; 1117():689-706. PubMed ID: 24357386 [TBL] [Abstract][Full Text] [Related]
15. Localization and fate of aluminium in the digestive gland of the freshwater snail Lymnaea stagnalis. Elangovan R; McCrohan CR; Ballance S; Powell JJ; White KN Tissue Cell; 2000 Feb; 32(1):79-87. PubMed ID: 10798321 [TBL] [Abstract][Full Text] [Related]
16. A public software for energy filtering transmission electron tomography (EFTET-J): application to the study of granular inclusions in bacteria from Riftia pachyptila. Boudier T; Lechaire JP; Frébourg G; Messaoudi C; Mory C; Colliex C; Gaill F; Marco S J Struct Biol; 2005 Aug; 151(2):151-9. PubMed ID: 15979897 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of the elemental composition and the mass of bacterial polyphosphate bodies using STEM EDX. Goldberg J; Gonzalez H; Jensen TE; Corpe WA Microbios; 2001; 106(415):177-88. PubMed ID: 11522129 [TBL] [Abstract][Full Text] [Related]
18. Insight of EDX analysis and EFTEM: are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals? Volland JM; Lechaire JP; Frebourg G; Aranda DA; Ramdine G; Gros O Microsc Res Tech; 2012 Apr; 75(4):425-32. PubMed ID: 21919125 [TBL] [Abstract][Full Text] [Related]
19. Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI. Lütz-Meindl U; Lütz C Micron; 2006; 37(5):452-8. PubMed ID: 16376553 [TBL] [Abstract][Full Text] [Related]
20. Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules. Pigino G; Migliorini M; Paccagnini E; Bernini F; Leonzio C Tissue Cell; 2005 Jun; 37(3):223-32. PubMed ID: 15936358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]