These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 18638200)

  • 1. Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles.
    Byrne GD; Pitter MC; Zhang J; Falcone FH; Stolnik S; Somekh MG
    J Microsc; 2008 Jul; 231(Pt 1):168-79. PubMed ID: 18638200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.
    Byrne GD; Vllasaliu D; Falcone FH; Somekh MG; Stolnik S
    Mol Pharm; 2015 Nov; 12(11):3862-70. PubMed ID: 26402436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total internal reflection fluorescence (TIRF) microscopy.
    Trache A; Meininger GA
    Curr Protoc Microbiol; 2008 Aug; Chapter 2():Unit 2A.2.1-2A.2.22. PubMed ID: 18729056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: application to single virus-like particle entry into a cell.
    Gorelik J; Shevchuk A; Ramalho M; Elliott M; Lei C; Higgins CF; Lab MJ; Klenerman D; Krauzewicz N; Korchev Y
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16018-23. PubMed ID: 12466501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells.
    Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM
    J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of TIRF microscopy to visualize actin and microtubules in migrating cells.
    Manneville JB
    Methods Enzymol; 2006; 406():520-32. PubMed ID: 16472684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications.
    Poulter NS; Pitkeathly WT; Smith PJ; Rappoport JZ
    Methods Mol Biol; 2015; 1251():1-23. PubMed ID: 25391791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction.
    Parhamifar L; Moghimi SM
    Methods Mol Biol; 2012; 906():473-82. PubMed ID: 22791457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging exocytosis of single insulin secretory granules with TIRF microscopy.
    Nagamatsu S; Ohara-Imaizumi M
    Methods Mol Biol; 2008; 440():259-68. PubMed ID: 18369952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved microspectrofluorometry and fluorescence imaging techniques: study of porphyrin-mediated cellular uptake of oligonucleotides.
    Praus P; Kocisová E; Mojzes P; Stepánek J; Seksek O; Sureau F; Turpin PY
    Ann N Y Acad Sci; 2008; 1130():117-21. PubMed ID: 18596340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total internal reflection fluorescence microscopy: technical innovations and novel applications.
    Schneckenburger H
    Curr Opin Biotechnol; 2005 Feb; 16(1):13-8. PubMed ID: 15722010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules.
    Gell C; Berndt M; Enderlein J; Diez S
    J Microsc; 2009 Apr; 234(1):38-46. PubMed ID: 19335455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial control of pa-GFP photoactivation in living cells.
    Testa I; Parazzoli D; Barozzi S; Garrè M; Faretta M; Diaspro A
    J Microsc; 2008 Apr; 230(Pt 1):48-60. PubMed ID: 18387039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule dynamics at the cell cortex probed by TIRF microscopy.
    Grigoriev I; Akhmanova A
    Methods Cell Biol; 2010; 97():91-109. PubMed ID: 20719267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-lapse total internal reflection fluorescence video of acetylcholine receptor cluster formation on myotubes.
    Wang MD; Axelrod D
    Dev Dyn; 1994 Sep; 201(1):29-40. PubMed ID: 7803845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light microscopy techniques for live cell imaging.
    Stephens DJ; Allan VJ
    Science; 2003 Apr; 300(5616):82-6. PubMed ID: 12677057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores.
    van de Linde S; Sauer M; Heilemann M
    J Struct Biol; 2008 Dec; 164(3):250-4. PubMed ID: 18790061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ single-molecule imaging with attoliter detection using objective total internal reflection confocal microscopy.
    Burghardt TP; Ajtai K; Borejdo J
    Biochemistry; 2006 Apr; 45(13):4058-68. PubMed ID: 16566579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of differential interference contrast with prism-type total internal fluorescence microscope for direct observation of polyamidoamine dendrimer nanoparticle as a gene delivery in living human cells.
    Lee S; Choi JS; Kang SH
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3689-94. PubMed ID: 18047038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex.
    Konopka CA; Bednarek SY
    Plant J; 2008 Jan; 53(1):186-96. PubMed ID: 17931350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.