BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18638300)

  • 1. Commentary on Holmes et al. (2007): resolving the debate on when extinction risk is predictable.
    Ellner SP; Holmes EE
    Ecol Lett; 2008 Aug; 11(8):E1-5. PubMed ID: 18638300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical approach to quasi-extinction forecasting.
    Holmes EE; Sabo JL; Viscido SV; Fagan WF
    Ecol Lett; 2007 Dec; 10(12):1182-98. PubMed ID: 17803676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demographic characteristics of extinction in a small, insular population of house sparrows in northern Norway.
    Ringsby TH; Saether BE; Jensen H; Engen S
    Conserv Biol; 2006 Dec; 20(6):1761-7. PubMed ID: 17181811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing nature reserves in the face of uncertainty.
    McCarthy MA; Thompson CJ; Moore AL; Possingham HP
    Ecol Lett; 2011 May; 14(5):470-5. PubMed ID: 21371231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extinction dynamics in mainland-island metapopulations: an N-patch stochastic model.
    Alonso D; Mckane A
    Bull Math Biol; 2002 Sep; 64(5):913-58. PubMed ID: 12391862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment.
    Liu M; Wang K
    J Theor Biol; 2010 Jun; 264(3):934-44. PubMed ID: 20214909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel moment closure approximations in stochastic epidemics.
    Krishnarajah I; Cook A; Marion G; Gibson G
    Bull Math Biol; 2005 Jul; 67(4):855-73. PubMed ID: 15893556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental variation, stochastic extinction, and competitive coexistence.
    Adler PB; Drake JM
    Am Nat; 2008 Nov; 172(5):186-95. PubMed ID: 18817458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habitat change and plant demography: assessing the extinction risk of a formerly common grassland perennial.
    Schleuning M; Matthies D
    Conserv Biol; 2009 Feb; 23(1):174-83. PubMed ID: 18847437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the time to quasi-extinction for populations far below their carrying capacity.
    Engen S; Saether BE
    J Theor Biol; 2000 Aug; 205(4):649-58. PubMed ID: 10931759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic growth and extinction in a spatial geometric Brownian population model with migration and correlated noise.
    Engen S
    Math Biosci; 2007 Sep; 209(1):240-55. PubMed ID: 17316709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How is extinction risk related to population-size variability over time? A family of models for species with repeated extinction and immigration.
    Legendre S; Schoener TW; Clobert J; Spiller DA
    Am Nat; 2008 Aug; 172(2):282-98. PubMed ID: 18613775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speed of expansion and extinction in experimental populations.
    Drake JM; Griffen BD
    Ecol Lett; 2009 Aug; 12(8):772-8. PubMed ID: 19469807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity in dynamic species abundance models: the selective effect of extinction processes.
    Engen S
    Math Biosci; 2007 Dec; 210(2):490-507. PubMed ID: 17662310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population viability analysis with species occurrence data from museum collections.
    Skarpaas O; Stabbetorp OE
    Conserv Biol; 2011 Jun; 25(3):577-86. PubMed ID: 21284730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extinction risk assessment for the species survival plan (SSP) population of the Bali mynah (Leucopsar rothschildi).
    Earnhardt JM; Thompson SD; Faust LJ
    Zoo Biol; 2009 May; 28(3):230-52. PubMed ID: 19504596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extinction risk depends strongly on factors contributing to stochasticity.
    Melbourne BA; Hastings A
    Nature; 2008 Jul; 454(7200):100-3. PubMed ID: 18596809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting fluctuations of reintroduced ibex populations: the importance of density dependence, environmental stochasticity and uncertain population estimates.
    Saether BE; Lillegård M; Grøtan V; Filli F; Engen S
    J Anim Ecol; 2007 Mar; 76(2):326-36. PubMed ID: 17302840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory for designing nature reserves for single species.
    McCarthy MA; Thompson CJ; Possingham HP
    Am Nat; 2005 Feb; 165(2):250-7. PubMed ID: 15729654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extinction risk of exploited wild roach (Rutilus rutilus) populations due to chemical feminization.
    An W; Hu J; Giesy JP; Yang M
    Environ Sci Technol; 2009 Oct; 43(20):7895-901. PubMed ID: 19921911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.