These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18638438)

  • 1. A mobility model for classical swine fever in feral pig populations.
    Milne G; Fermanis C; Johnston P
    Vet Res; 2008; 39(6):53. PubMed ID: 18638438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark.
    Boklund A; Goldbach SG; Uttenthal A; Alban L
    Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark.
    Boklund A; Toft N; Alban L; Uttenthal A
    Prev Vet Med; 2009 Aug; 90(3-4):180-93. PubMed ID: 19439381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-recovered cellular automata model.
    Doran RJ; Laffan SW
    Prev Vet Med; 2005 Aug; 70(1-2):133-52. PubMed ID: 15967247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of classical swine fever epidemics and control. I. General concepts and description of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):187-98. PubMed ID: 15908147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling disease outbreaks in wildlife using limited culling: modelling classical swine fever incursions in wild pigs in Australia.
    Cowled BD; Garner MG; Negus K; Ward MP
    Vet Res; 2012 Jan; 43(1):3. PubMed ID: 22243996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstrating freedom from disease using multiple complex data sources 2: case study--classical swine fever in Denmark.
    Martin PA; Cameron AR; Barfod K; Sergeant ES; Greiner M
    Prev Vet Med; 2007 May; 79(2-4):98-115. PubMed ID: 17239459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effectiveness of classical swine fever surveillance programmes in The Netherlands.
    Klinkenberg D; Nielen M; Mourits MC; de Jong MC
    Prev Vet Med; 2005 Jan; 67(1):19-37. PubMed ID: 15698906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated financial losses of classical swine fever epidemics in the Finnish pig production sector.
    Niemi JK; Lehtonen H; Pietola K; Lyytikäinen T; Raulo S
    Prev Vet Med; 2008 May; 84(3-4):194-212. PubMed ID: 18207589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density as an explanatory variable of movements and calf survival in savanna elephants across southern Africa.
    Young KD; Van Aarde RJ
    J Anim Ecol; 2010 May; 79(3):662-73. PubMed ID: 20180876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral adaptations to heat stress and water scarcity in white-faced capuchins (Cebus capucinus) in Santa Rosa National Park, Costa Rica.
    Campos FA; Fedigan LM
    Am J Phys Anthropol; 2009 Jan; 138(1):101-11. PubMed ID: 18711741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling spread of foot-and-mouth disease in wild white-tailed deer and feral pig populations using a geographic-automata model and animal distributions.
    Ward MP; Laffan SW; Highfield LD
    Prev Vet Med; 2009 Sep; 91(1):55-63. PubMed ID: 19515439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sero-prevalence and risk factors associated with African swine fever on pig farms in southwest Nigeria.
    Awosanya EJ; Olugasa B; Ogundipe G; Grohn YT
    BMC Vet Res; 2015 Jun; 11():133. PubMed ID: 26063337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of viraemia- and clinical-based estimates of within- and between-pen transmission of classical swine fever virus from three transmission experiments.
    Durand B; Davila S; Cariolet R; Mesplède A; Le Potier MF
    Vet Microbiol; 2009 Mar; 135(3-4):196-204. PubMed ID: 18986777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of seasonal variation in prey abundance on field metabolism, water flux, and activity of a tropical ambush foraging snake.
    Christian K; Webb JK; Schultz T; Green B
    Physiol Biochem Zool; 2007; 80(5):522-33. PubMed ID: 17717815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seroprevalence and risk factors for the presence of ruminant pestiviruses in the Dutch swine population.
    Loeffen WL; van Beuningen A; Quak S; Elbers AR
    Vet Microbiol; 2009 May; 136(3-4):240-5. PubMed ID: 19128896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity analysis to evaluate the impact of uncertain factors in a scenario tree model for classical swine fever introduction.
    de Vos CJ; Saatkamp HW; Nielen M; Huirne RB
    Risk Anal; 2006 Oct; 26(5):1311-22. PubMed ID: 17054533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of foot-and-mouth disease spread within an integrated livestock system in Texas, USA.
    Ward MP; Highfield LD; Vongseng P; Graeme Garner M
    Prev Vet Med; 2009 Apr; 88(4):286-97. PubMed ID: 19178967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of geospatial and ecological factors affecting disease spread in wild pigs: considerations for models of foot-and-mouth disease spread.
    Cowled B; Garner G
    Prev Vet Med; 2008 Nov; 87(3-4):197-212. PubMed ID: 18508144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.