BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18638470)

  • 21. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2.
    Vaidyanathan JB; Walle T
    J Pharmacol Exp Ther; 2003 Nov; 307(2):745-52. PubMed ID: 12970388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gamma-Aminobutyric acid (GABA) transport across human intestinal epithelial (Caco-2) cell monolayers.
    Thwaites DT; Basterfield L; McCleave PM; Carter SM; Simmons NL
    Br J Pharmacol; 2000 Feb; 129(3):457-64. PubMed ID: 10711343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2).
    Lalloo AK; Luo FR; Guo A; Paranjpe PV; Lee SH; Vyas V; Rubin E; Sinko PJ
    BMC Med; 2004 May; 2():16. PubMed ID: 15125776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-neurotoxic amphetamine derivatives release serotonin through serotonin transporters.
    Rudnick G; Wall SC
    Mol Pharmacol; 1993 Feb; 43(2):271-6. PubMed ID: 8429828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LLC-PK(1) cells stably expressing the human norepinephrine transporter: A functional model of carrier-mediated norepinephrine release in protracted myocardial ischemia.
    Smith NC; Levi R
    J Pharmacol Exp Ther; 1999 Nov; 291(2):456-63. PubMed ID: 10525059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers.
    Maeng HJ; Yoo HJ; Kim IW; Song IS; Chung SJ; Shim CK
    J Pharm Sci; 2002 Dec; 91(12):2614-21. PubMed ID: 12434406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport characteristics of diphenhydramine in human intestinal epithelial Caco-2 cells: contribution of pH-dependent transport system.
    Mizuuchi H; Katsura T; Saito H; Hashimoto Y; Inui KI
    J Pharmacol Exp Ther; 1999 Jul; 290(1):388-92. PubMed ID: 10381804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH-dependent functional activity of P-glycoprotein in limiting intestinal absorption of protic drugs: kinetic analysis of quinidine efflux in situ.
    Varma MV; Panchagnula R
    J Pharm Sci; 2005 Dec; 94(12):2632-43. PubMed ID: 16258992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models.
    Taur JS; Rodriguez-Proteau R
    Xenobiotica; 2008 Dec; 38(12):1536-50. PubMed ID: 18951251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of phenylethylamine at intestinal epithelial (Caco-2) cells: mechanism and substrate specificity.
    Fischer W; Neubert RH; Brandsch M
    Eur J Pharm Biopharm; 2010 Feb; 74(2):281-9. PubMed ID: 19962438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Intestional absorption and mechanism of tiliani in Caco-2 cell model].
    Huang Z; Xing J; Wang X; Wang S; Yuan Y
    Zhongguo Zhong Yao Za Zhi; 2012 May; 37(9):1315-8. PubMed ID: 22803383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereoselective and concentration-dependent polarized epithelial permeability of a series of phosphoramidate triester prodrugs of d4T: an in vitro study in Caco-2 and Madin-Darby canine kidney cell monolayers.
    Siccardi D; Kandalaft LE; Gumbleton M; McGuigan C
    J Pharmacol Exp Ther; 2003 Dec; 307(3):1112-9. PubMed ID: 14557377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transepithelial transport of 4-chloro-2-methylphenoxyacetic acid (MCPA) across human intestinal Caco-2 cell monolayers.
    Kimura O; Tsukagoshi K; Hayasaka M; Endo T
    Basic Clin Pharmacol Toxicol; 2012 Jun; 110(6):530-6. PubMed ID: 22181038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of intestinal absorption of an orally active beta-lactam prodrug: uptake and transport of carindacillin in Caco-2 cells.
    Li YH; Ito K; Tsuda Y; Kohda R; Yamada H; Itoh T
    J Pharmacol Exp Ther; 1999 Sep; 290(3):958-64. PubMed ID: 10454465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers.
    Han TK; Proctor WR; Costales CL; Cai H; Everett RS; Thakker DR
    J Pharmacol Exp Ther; 2015 Mar; 352(3):519-28. PubMed ID: 25563903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; RegÄrdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2).
    Videmann B; Tep J; Cavret S; Lecoeur S
    Food Chem Toxicol; 2007 Oct; 45(10):1938-47. PubMed ID: 17543436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers.
    Wang Y; Cao J; Wang X; Zeng S
    Chirality; 2010 Mar; 22(3):361-8. PubMed ID: 19575464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of parthenolide across human intestinal cells (Caco-2).
    Khan SI; Abourashed EA; Khan IA; Walker LA
    Planta Med; 2003 Nov; 69(11):1009-12. PubMed ID: 14735438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of levofloxacin in a kidney epithelial cell line, LLC-PK1: interaction with organic cation transporters in apical and basolateral membranes.
    Ohtomo T; Saito H; Inotsume N; Yasuhara M; Inui KI
    J Pharmacol Exp Ther; 1996 Mar; 276(3):1143-8. PubMed ID: 8786545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.