BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3049 related articles for article (PubMed ID: 18638482)

  • 1. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predisposition of the dark state of rhodopsin to functional changes in structure.
    Isin B; Rader AJ; Dhiman HK; Klein-Seetharaman J; Bahar I
    Proteins; 2006 Dec; 65(4):970-83. PubMed ID: 17009319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into agonist-induced activation of G-protein-coupled receptors.
    Deupi X; Standfuss J
    Curr Opin Struct Biol; 2011 Aug; 21(4):541-51. PubMed ID: 21723721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation.
    Bhattacharya S; Hall SE; Li H; Vaidehi N
    Biophys J; 2008 Mar; 94(6):2027-42. PubMed ID: 18065472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.
    Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of conformational ensembles in ligand recognition in G-protein coupled receptors.
    Niesen MJ; Bhattacharya S; Vaidehi N
    J Am Chem Soc; 2011 Aug; 133(33):13197-204. PubMed ID: 21766860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activation mechanism of chemokine receptor CCR5 involves common structural changes but a different network of interhelical interactions relative to rhodopsin.
    Springael JY; de Poorter C; Deupi X; Van Durme J; Pardo L; Parmentier M
    Cell Signal; 2007 Jul; 19(7):1446-56. PubMed ID: 17320349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation.
    Rubenstein LA; Zauhar RJ; Lanzara RG
    J Mol Graph Model; 2006 Dec; 25(4):396-409. PubMed ID: 16574446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A G protein-coupled receptor at work: the rhodopsin model.
    Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP
    Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the ghrelin receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR).
    Floquet N; M'Kadmi C; Perahia D; Gagne D; Bergé G; Marie J; Banères JL; Galleyrand JC; Fehrentz JA; Martinez J
    J Mol Biol; 2010 Jan; 395(4):769-84. PubMed ID: 19782690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state.
    Rovati GE; Capra V; Neubig RR
    Mol Pharmacol; 2007 Apr; 71(4):959-64. PubMed ID: 17192495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational mapping of the conformational transitions in agonist selective pathways of a G-protein coupled receptor.
    Bhattacharya S; Vaidehi N
    J Am Chem Soc; 2010 Apr; 132(14):5205-14. PubMed ID: 20235532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple switches in G protein-coupled receptor activation.
    Ahuja S; Smith SO
    Trends Pharmacol Sci; 2009 Sep; 30(9):494-502. PubMed ID: 19732972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist.
    Mahalingam M; Vogel R
    Biochemistry; 2006 Dec; 45(51):15624-32. PubMed ID: 17176084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding GPCR homology model binding sites via a balloon potential: A molecular dynamics refinement approach.
    Kimura SR; Tebben AJ; Langley DR
    Proteins; 2008 Jun; 71(4):1919-29. PubMed ID: 18175323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 153.