These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18638485)

  • 21. Incorporation of 8-hydroxyguanosine (8-oxo-7,8-dihydroguanosine) 5'-triphosphate by bacterial and human RNA polymerases.
    Kamiya H; Suzuki A; Yamaguchi Y; Handa H; Harashima H
    Free Radic Biol Med; 2009 Jun; 46(12):1703-7. PubMed ID: 19362141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription.
    Johnson RS; Strausbauch M; McCloud C
    PLoS One; 2022; 17(10):e0273746. PubMed ID: 36282801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Nucleotide analogs with modified sugar residue, in the RNA synthesis reaction of RNA polymerase from Escherichia coli].
    Aĭvazashvili VA; Bibilashvili RSh; Florent'ev VL
    Mol Biol (Mosk); 1982; 16(3):493-8. PubMed ID: 7048064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translocation of Escherichia coli RNA polymerase against a protein roadblock in vivo highlights a passive sliding mechanism for transcript elongation.
    Mosrin-Huaman C; Turnbough CL; Rahmouni AR
    Mol Microbiol; 2004 Mar; 51(5):1471-81. PubMed ID: 14982639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New models for the mechanism of transcription elongation and its regulation.
    Chamberlin MJ
    Harvey Lect; 1992-1993; 88():1-21. PubMed ID: 1285418
    [No Abstract]   [Full Text] [Related]  

  • 26. Transcription by single molecules of RNA polymerase observed by light microscopy.
    Schafer DA; Gelles J; Sheetz MP; Landick R
    Nature; 1991 Aug; 352(6334):444-8. PubMed ID: 1861724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracking RNA polymerase, one step at a time.
    Vassylyev DG; Artsimovitch I
    Cell; 2005 Dec; 123(6):977-9. PubMed ID: 16360025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural analysis of ternary complexes of Escherichia coli RNA polymerase: ribonuclease footprinting of the nascent RNA in complexes.
    Milan S; D'Ari L; Chamberlin MJ
    Biochemistry; 1999 Jan; 38(1):218-25. PubMed ID: 9890901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of Pyrophosphorolysis in the Initiation-to-Elongation Transition by E. coli RNA Polymerase.
    Imashimizu M; Kireeva ML; Lubkowska L; Kashlev M; Shimamoto N
    J Mol Biol; 2019 Jun; 431(14):2528-2542. PubMed ID: 31029704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic modeling and simulation of in vitro transcription by phage T7 RNA polymerase.
    Arnold S; Siemann M; Scharnweber K; Werner M; Baumann S; Reuss M
    Biotechnol Bioeng; 2001 Mar; 72(5):548-61. PubMed ID: 11460245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dynamic model for transcription elongation and sequence-dependent short pauses by RNA polymerase.
    Xie P
    Biosystems; 2008 Sep; 93(3):199-210. PubMed ID: 18539382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of sequences flanking the "-10" homology region of the spc-promoter from the starting point, on the interaction with Escherichia coli RNA polymerase].
    Savinkova LK; Sokolenko AA; Kel' AE; Tulhonov II; Kumarev VP; Baranova LV; Pap VA; Salganik RI
    Mol Biol (Mosk); 1996; 30(1):188-91. PubMed ID: 8714136
    [No Abstract]   [Full Text] [Related]  

  • 33. [Pyrophosphate analogs in the pyrophosphorolysis reaction catalyzed by Escherichia coli RNA polymerase].
    Rozovskaia TA; Chenchik AA; Tarusova NB; Bibilashvili RSh; Khomutov RM
    Mol Biol (Mosk); 1981; 15(6):1205-23. PubMed ID: 6275257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Template properties of the decadeoxynucleotide d(pCCACGAAACC) in the RNA polymerase system of Escherichia coli].
    Badashkeeva AG; Denisova LIa; Zagrebel'nyĭ SN; Knorre DG; Pustoshilova NM
    Mol Biol (Mosk); 1978; 12(2):327-33. PubMed ID: 349360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA polymerase: direct evidence for two active sites involved in transcription.
    Dennis D
    Nucleic Acids Symp Ser; 1985; (16):261-3. PubMed ID: 3911170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneity of E. coli RNA polymerase revealed by high pressure.
    Erijman L; Clegg RM
    J Mol Biol; 1995 Oct; 253(2):259-65. PubMed ID: 7563087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription.
    Furukawa K; Abe H; Abe N; Harada M; Tsuneda S; Ito Y
    Bioorg Med Chem Lett; 2008 Aug; 18(16):4562-5. PubMed ID: 18667307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Nun protein of bacteriophage HK022 inhibits translocation of Escherichia coli RNA polymerase without abolishing its catalytic activities.
    Hung SC; Gottesman ME
    Genes Dev; 1997 Oct; 11(20):2670-8. PubMed ID: 9334329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An alternate mechanism of abortive release marked by the formation of very long abortive transcripts.
    Chander M; Austin KM; Aye-Han NN; Sircar P; Hsu LM
    Biochemistry; 2007 Nov; 46(44):12687-99. PubMed ID: 17929835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct observation of base-pair stepping by RNA polymerase.
    Abbondanzieri EA; Greenleaf WJ; Shaevitz JW; Landick R; Block SM
    Nature; 2005 Nov; 438(7067):460-5. PubMed ID: 16284617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.