These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1863912)

  • 1. Mechanisms of pain arising from articular tissues.
    Sessle BJ; Hu JW
    Can J Physiol Pharmacol; 1991 May; 69(5):617-26. PubMed ID: 1863912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms and pathways in craniofacial pain.
    Sessle BJ
    Can J Neurol Sci; 1999 Nov; 26 Suppl 3():S7-11. PubMed ID: 10563227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal mechanisms of pain with special emphasis on visceral and deep somatic pain.
    Jänig W
    Acta Neurochir Suppl (Wien); 1987; 38():16-32. PubMed ID: 3307313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of neurons in feline trigeminal subnucleus caudalis (medullary dorsal horn) to cutaneous, intraoral, and muscle afferent stimuli.
    Amano N; Hu JW; Sessle BJ
    J Neurophysiol; 1986 Feb; 55(2):227-43. PubMed ID: 3950689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temporomandibular joint stimulation on nociceptive and nonnociceptive neurons of the cat's trigeminal subnucleus caudalis (medullary dorsal horn).
    Broton JG; Hu JW; Sessle BJ
    J Neurophysiol; 1988 May; 59(5):1575-89. PubMed ID: 3385474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Organization of Cutaneous and Muscle Afferent Synapses onto Immature Spinal Lamina I Projection Neurons.
    Li J; Baccei ML
    J Neurosci; 2017 Feb; 37(6):1505-1517. PubMed ID: 28069928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray.
    Hayashi H; Sumino R; Sessle BJ
    J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substance P (NK1) and somatostatin (sst2A) receptor immunoreactivity in NTS-projecting rat dorsal horn neurones activated by nociceptive afferent input.
    Gamboa-Esteves FO; McWilliam PN; Batten TF
    J Chem Neuroanat; 2004 Jul; 27(4):251-66. PubMed ID: 15261332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The trigemino-cervical complex. Integration of peripheral and central pain mechanisms in primary headache syndromes].
    Busch V; Frese A; Bartsch T
    Schmerz; 2004 Oct; 18(5):404-10. PubMed ID: 15252726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal processing: anatomy and physiology of spinal nociceptive mechanisms.
    Iggo A; Steedman WM; Fleetwood-Walker S
    Philos Trans R Soc Lond B Biol Sci; 1985 Feb; 308(1136):235-52. PubMed ID: 2858881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic and specific autonomic reactions in pain: efferent, afferent and endocrine components.
    Jänig W
    Eur J Anaesthesiol; 1985 Dec; 2(4):319-46. PubMed ID: 3910427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input.
    Bartsch T; Goadsby PJ
    Brain; 2002 Jul; 125(Pt 7):1496-509. PubMed ID: 12077000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonged primary afferent induced alterations in dorsal horn neurones, an intracellular analysis in vivo and in vitro.
    Woolf CJ; Thompson SW; King AE
    J Physiol (Paris); 1988-1989; 83(3):255-66. PubMed ID: 3272296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal dorsal horn neurone targets for nociceptive primary afferents: do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level.
    Morris R; Cheunsuang O; Stewart A; Maxwell D
    Brain Res Brain Res Rev; 2004 Oct; 46(2):173-90. PubMed ID: 15464206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orofacial deep and cutaneous tissue inflammation and trigeminal neuronal activation. Implications for persistent temporomandibular pain.
    Imbe H; Iwata K; Zhou QQ; Zou S; Dubner R; Ren K
    Cells Tissues Organs; 2001; 169(3):238-47. PubMed ID: 11455119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls.
    Villanueva L; Le Bars D
    Biol Res; 1995; 28(1):113-25. PubMed ID: 8728826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffuse noxious inhibitory controls (DNIC) in animals and in man.
    Le Bars D; Villanueva L; Bouhassira D; Willer JC
    Patol Fiziol Eksp Ter; 1992; (4):55-65. PubMed ID: 1303506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of esophageal pain.
    Lynn RB
    Am J Med; 1992 May; 92(5A):11S-19S. PubMed ID: 1595755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anterior pretectal nucleus facilitation of superficial dorsal horn neurones and modulation of deafferentation pain in the rat.
    Rees H; Terenzi MG; Roberts MH
    J Physiol; 1995 Nov; 489 ( Pt 1)(Pt 1):159-69. PubMed ID: 8583399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pain syndromes with causal participation of the sympathetic nervous system].
    Baron R; Jänig W
    Anaesthesist; 1998 Jan; 47(1):4-23. PubMed ID: 9530442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.