These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18639458)

  • 21. Lipopolysaccharides and plant innate immunity.
    Erbs G; Molinaro A; Dow JM; Newman MA
    Subcell Biochem; 2010; 53():387-403. PubMed ID: 20593276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Priming in systemic plant immunity.
    Jung HW; Tschaplinski TJ; Wang L; Glazebrook J; Greenberg JT
    Science; 2009 Apr; 324(5923):89-91. PubMed ID: 19342588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant immunity: a lesson from pathogenic bacterial effector proteins.
    Cui H; Xiang T; Zhou JM
    Cell Microbiol; 2009 Oct; 11(10):1453-61. PubMed ID: 19622098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial avirulence proteins as triggers of plant disease resistance.
    Van den Ackerveken G; Bonas U
    Trends Microbiol; 1997 Oct; 5(10):394-8. PubMed ID: 9351175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DsbB is required for the pathogenesis process of Xanthomonas campestris pv. campestris.
    Jiang BL; Liu J; Chen LF; Ge YY; Hang XH; He YQ; Tang DJ; Lu GT; Tang JL
    Mol Plant Microbe Interact; 2008 Aug; 21(8):1036-45. PubMed ID: 18616400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial elicitation and evasion of plant innate immunity.
    Abramovitch RB; Anderson JC; Martin GB
    Nat Rev Mol Cell Biol; 2006 Aug; 7(8):601-11. PubMed ID: 16936700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.
    Boller T; He SY
    Science; 2009 May; 324(5928):742-4. PubMed ID: 19423812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance.
    Encinas-Villarejo S; Maldonado AM; Amil-Ruiz F; de los Santos B; Romero F; Pliego-Alfaro F; Muñoz-Blanco J; Caballero JL
    J Exp Bot; 2009; 60(11):3043-65. PubMed ID: 19470657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of temperature modulation of plant defense against biotrophic microbes.
    Wang Y; Bao Z; Zhu Y; Hua J
    Mol Plant Microbe Interact; 2009 May; 22(5):498-506. PubMed ID: 19348568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant perception systems for pathogen recognition and defence.
    Gómez-Gómez L
    Mol Immunol; 2004 Nov; 41(11):1055-62. PubMed ID: 15476917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal phytotoxins as mediators of virulence.
    Möbius N; Hertweck C
    Curr Opin Plant Biol; 2009 Aug; 12(4):390-8. PubMed ID: 19608453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens.
    Jha G; Rajeshwari R; Sonti RV
    Mol Plant Microbe Interact; 2005 Sep; 18(9):891-8. PubMed ID: 16167759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An important role of a BAHD acyl transferase-like protein in plant innate immunity.
    Zheng Z; Qualley A; Fan B; Dudareva N; Chen Z
    Plant J; 2009 Mar; 57(6):1040-53. PubMed ID: 19036031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity.
    Engelhardt S; Lee J; Gäbler Y; Kemmerling B; Haapalainen ML; Li CM; Wei Z; Keller H; Joosten M; Taira S; Nürnberger T
    Plant J; 2009 Feb; 57(4):706-17. PubMed ID: 18980650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant immune responses triggered by beneficial microbes.
    Van Wees SC; Van der Ent S; Pieterse CM
    Curr Opin Plant Biol; 2008 Aug; 11(4):443-8. PubMed ID: 18585955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber.
    Park K; Kloepper JW; Ryu CM
    J Microbiol Biotechnol; 2008 Jun; 18(6):1095-100. PubMed ID: 18600053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defense suppression by virulence effectors of bacterial phytopathogens.
    da Cunha L; Sreerekha MV; Mackey D
    Curr Opin Plant Biol; 2007 Aug; 10(4):349-57. PubMed ID: 17625953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.
    van Baarlen P; van Belkum A; Thomma BP
    Drug Discov Today; 2007 Feb; 12(3-4):167-73. PubMed ID: 17275738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene Ontology for type III effectors: capturing processes at the host-pathogen interface.
    Lindeberg M; Collmer A
    Trends Microbiol; 2009 Jul; 17(7):304-11. PubMed ID: 19576777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response.
    Choi HW; Lee DH; Hwang BK
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1389-400. PubMed ID: 19810808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.