These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 18639571)

  • 1. The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast.
    Rucker FJ; Osorio D
    Vision Res; 2008 Sep; 48(19):1929-39. PubMed ID: 18639571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accommodation responses to stimuli in cone contrast space.
    Rucker FJ; Kruger PB
    Vision Res; 2004 Nov; 44(25):2931-44. PubMed ID: 15380997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration.
    Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V
    Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cone contributions to signals for accommodation and the relationship to refractive error.
    Rucker FJ; Kruger PB
    Vision Res; 2006 Oct; 46(19):3079-89. PubMed ID: 16782165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli.
    Rucker FJ; Kruger PB
    Vision Res; 2004 Jan; 44(2):197-208. PubMed ID: 14637368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.
    Pridmore RW
    PLoS One; 2013; 8(10):e77134. PubMed ID: 24204755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality.
    Autrusseau F; Thibos L; Shevell SK
    Vision Res; 2011 Nov; 51(21-22):2282-94. PubMed ID: 21906613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of accommodation by longitudinal chromatic aberration and blue cones.
    Graef K; Schaeffel F
    J Vis; 2012 Jan; 12(1):14. PubMed ID: 22262912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye.
    Gunther KL; Dobkins KR
    Vision Res; 2002 May; 42(11):1367-78. PubMed ID: 12044743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signals for defocus arise from longitudinal chromatic aberration in chick.
    Rucker FJ; Eskew RT; Taylor C
    Exp Eye Res; 2020 Sep; 198():108126. PubMed ID: 32717338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Normative Data Set for the Clinical Assessment of Achromatic and Chromatic Contrast Sensitivity Using a qCSF Approach.
    Kim YJ; Reynaud A; Hess RF; Mullen KT
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3628-3636. PubMed ID: 28728170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor-specific light adaptation of critical flicker frequency in trichromat and dichromat observers.
    Huchzermeyer C; Martins CMG; Nagy B; Barboni MTS; Ventura DF; Costa MF; Kremers J
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B106-B113. PubMed ID: 29603928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolated short-wavelength sensitive cones can mediate a reflex accommodation response.
    Rucker FJ; Kruger PB
    Vision Res; 2001 Mar; 41(7):911-22. PubMed ID: 11248276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Color, contrast sensitivity, and the cone mosaic.
    Williams D; Sekiguchi N; Brainard D
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):9770-7. PubMed ID: 8234313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
    Tuten WS; Harmening WM; Sabesan R; Roorda A; Sincich LC
    J Neurosci; 2017 Sep; 37(39):9498-9509. PubMed ID: 28871030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of human long-wave and middle-wave cones to motion detection.
    Stromeyer CF; Kronauer RE; Ryu A; Chaparro A; Eskew RT
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):221-43. PubMed ID: 7658377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paradoxical shifts in human color sensitivity caused by constructive and destructive interference between signals from the same cone class.
    Stockman A; Montag ED; Plummer DJ
    Vis Neurosci; 2006; 23(3-4):471-8. PubMed ID: 16961982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The S-cone contribution to luminance depends on the M- and L-cone adaptation levels: silent surrounds?
    Ripamonti C; Woo WL; Crowther E; Stockman A
    J Vis; 2009 Mar; 9(3):10.1-16. PubMed ID: 19757949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.