BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18639615)

  • 1. Coordinate action of pre- and postsynaptic brain-derived neurotrophic factor is required for AMPAR trafficking and acquisition of in vitro classical conditioning.
    Li W; Keifer J
    Neuroscience; 2008 Aug; 155(3):686-97. PubMed ID: 18639615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK.
    Li W; Keifer J
    Neurobiol Learn Mem; 2009 Mar; 91(3):243-9. PubMed ID: 18977306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase C-dependent and independent signaling pathways regulate synaptic GluR1 and GluR4 AMPAR subunits during in vitro classical conditioning.
    Zheng Z; Keifer J
    Neuroscience; 2008 Oct; 156(4):872-84. PubMed ID: 18809472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning.
    Zheng Z; Keifer J
    J Neurophysiol; 2009 May; 101(5):2539-49. PubMed ID: 19261706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning.
    Zheng Z; Sabirzhanov B; Keifer J
    J Biol Chem; 2010 Nov; 285(45):34708-17. PubMed ID: 20807770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transsynaptic EphB/Ephrin-B signaling regulates growth of presynaptic boutons required for classical conditioning.
    Li W; Zheng Z; Keifer J
    J Neurosci; 2011 Jun; 31(23):8441-9. PubMed ID: 21653848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning.
    Rattiner LM; Davis M; French CT; Ressler KJ
    J Neurosci; 2004 May; 24(20):4796-806. PubMed ID: 15152040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of silent synapses into the active pool by selective GluR1-3 and GluR4 AMPAR trafficking during in vitro classical conditioning.
    Mokin M; Zheng Z; Keifer J
    J Neurophysiol; 2007 Sep; 98(3):1278-86. PubMed ID: 17596423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant.
    Zheng Z; Sabirzhanov B; Keifer J
    J Neurophysiol; 2012 Jul; 108(1):101-11. PubMed ID: 22490558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAPK signaling pathways mediate AMPA receptor trafficking in an in vitro model of classical conditioning.
    Keifer J; Zheng ZQ; Zhu D
    J Neurophysiol; 2007 Mar; 97(3):2067-74. PubMed ID: 17202235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of amygdala-dependent learning by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol-3-kinase.
    Ou LC; Gean PW
    Neuropsychopharmacology; 2006 Feb; 31(2):287-96. PubMed ID: 16034442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons.
    Caldeira MV; Melo CV; Pereira DB; Carvalho R; Correia SS; Backos DS; Carvalho AL; Esteban JA; Duarte CB
    J Biol Chem; 2007 Apr; 282(17):12619-28. PubMed ID: 17337442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning.
    Keifer J; Sabirzhanov BE; Zheng Z; Li W; Clark TG
    J Neurosci; 2009 Nov; 29(47):14956-64. PubMed ID: 19940191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons.
    Inagaki T; Begum T; Reza F; Horibe S; Inaba M; Yoshimura Y; Komatsu Y
    Neurosci Res; 2008 Jun; 61(2):192-200. PubMed ID: 18395922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid enrichment of presynaptic protein in boutons undergoing classical conditioning is mediated by brain-derived neurotrophic factor.
    Li W; Keifer J
    Neuroscience; 2012 Feb; 203():50-8. PubMed ID: 22202461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of GLUR4-containing AMPA receptors to synaptic sites during in vitro classical conditioning.
    Mokin M; Keifer J
    Neuroscience; 2004; 128(2):219-28. PubMed ID: 15350635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors.
    Elmariah SB; Oh EJ; Hughes EG; Balice-Gordon RJ
    J Neurosci; 2005 Apr; 25(14):3638-50. PubMed ID: 15814795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms.
    Wu K; Len GW; McAuliffe G; Ma C; Tai JP; Xu F; Black IB
    Brain Res Mol Brain Res; 2004 Nov; 130(1-2):178-86. PubMed ID: 15519688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission.
    Madara JC; Levine ES
    J Neurophysiol; 2008 Dec; 100(6):3175-84. PubMed ID: 18922945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BDNF-induced local protein synthesis and synaptic plasticity.
    Leal G; Comprido D; Duarte CB
    Neuropharmacology; 2014 Jan; 76 Pt C():639-56. PubMed ID: 23602987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.