These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 18639798)

  • 1. RNA-dependent RNA polymerase isolated from cowpea chlorotic mottle virus-infected cowpeas is specific for bromoviral RNA.
    Miller WA; Hall TC
    Virology; 1984 Jan; 132(1):53-60. PubMed ID: 18639798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple technique for separation of Cowpea chlorotic mottle virus from Cucumber mosaic virus in natural mixed infections.
    Ali A; Roossinck MJ
    J Virol Methods; 2008 Nov; 153(2):163-7. PubMed ID: 18755217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-Scale Isolation of Viral RNA-Dependent RNA Polymerase from Protoplasts Inoculated with In Vitro Transcripts.
    Adkins S; Lewandowski DJ
    Phytopathology; 2001 Aug; 91(8):747-52. PubMed ID: 18944031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double infection of tobacco protoplasts with brome mosaic virus and cowpea chlorotic mottle virus.
    Watts JW; Dawson JR
    Virology; 1980 Sep; 105(2):501-7. PubMed ID: 18631680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subgenomic RNA promoters dictate the mode of recognition by bromoviral RNA-dependent RNA polymerases.
    Adkins S; Kao CC
    Virology; 1998 Dec; 252(1):1-8. PubMed ID: 9875310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular studies on bromovirus capsid protein. IV. Coat protein exchanges between brome mosaic and cowpea chlorotic mottle viruses exhibit neutral effects in heterologous hosts.
    Osman F; Grantham GL; Rao AL
    Virology; 1997 Nov; 238(2):452-9. PubMed ID: 9400617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bromovirus movement protein conditions for the host specificity of virus movement through the vascular system and affects pathogenicity in cowpea.
    Fujita Y; Fujita M; Mise K; Kobori T; Osaki T; Furusawa I
    Mol Plant Microbe Interact; 2000 Nov; 13(11):1195-203. PubMed ID: 11059486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First Report of Cowpea Aphid-Borne Mosaic Potyvirus from Cowpeas Grown Commercially in the U.S.
    Kline AS; Anderson EJ
    Plant Dis; 1997 Aug; 81(8):959. PubMed ID: 30866397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swelling of isometric and of bacilliform plant virus nucleocapsids is required for virus-specific protein synthesis in vitro.
    Brisco M; Hull R; Wilson TM
    Virology; 1986 Jan; 148(1):210-7. PubMed ID: 18640565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispensability of 3' tRNA-like sequence for packaging cowpea chlorotic mottle virus genomic RNAs.
    Annamalai P; Rao AL
    Virology; 2005 Feb; 332(2):650-8. PubMed ID: 15680430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cowpea mosaic virus RNA replication complex and the host-encoded RNA-dependent RNA polymerase-template complex are functionally different.
    Dorssers L; van der Meer J; Van Kammen A; Zabel P
    Virology; 1983 Feb; 125(1):155-74. PubMed ID: 18638890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of RNA-dependent RNA polymerases in uninfected and cowpea chlorotic mottle virus-infected cowpea leaves: selective removal of host RNA polymerase from membranes containing CCMV RNA replicase.
    White JL; Dawson WO
    Virology; 1978 Jul; 88(1):33-43. PubMed ID: 27898
    [No Abstract]   [Full Text] [Related]  

  • 13. Purification of a host-encoded RNA-dependent RNA polymerase from cowpea mosaic virus-infected cowpea leaves.
    Dorssers L; Zabel P; van der Meer J; van Kammen A
    Virology; 1982 Jan; 116(1):236-49. PubMed ID: 18635112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single codon change in a conserved motif of a bromovirus movement protein gene confers compatibility with a new host.
    Fujita Y; Mise K; Okuno T; Ahlquist P; Furusawa I
    Virology; 1996 Sep; 223(2):283-91. PubMed ID: 8806564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid bromovirus are required for adaptation to a nonhost.
    Sasaki N; Fujita Y; Mise K; Furusawa I
    Virology; 2001 Jan; 279(1):47-57. PubMed ID: 11145888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of Cowpea Stunt Disease Causing Viruses on Wild Bean in Arkansas.
    Kline AS; Anderson EJ; Smith EB
    Plant Dis; 1997 Feb; 81(2):231. PubMed ID: 30870920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection.
    Allison R; Thompson C; Ahlquist P
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1820-4. PubMed ID: 2308940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete nucleotide sequences of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus.
    Dasgupta R; Kaesberg P
    Nucleic Acids Res; 1982 Jan; 10(2):703-13. PubMed ID: 6895941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution.
    Allison RF; Janda M; Ahlquist P
    Virology; 1989 Sep; 172(1):321-30. PubMed ID: 2773323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstrain pseudorecombinants of cowpea chlorotic mottle virus: effects on systemic spread and symptom formation in soybean and cowpea.
    Shang H; Bujarski JJ
    Mol Plant Microbe Interact; 1993; 6(6):755-63. PubMed ID: 8118057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.