BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 18639912)

  • 1. Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution.
    Nybom SM; Salminen SJ; Meriluoto JA
    Toxicon; 2008 Aug; 52(2):214-20. PubMed ID: 18639912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of microcystin-LR by strains of metabolically active probiotic bacteria.
    Nybom SM; Salminen SJ; Meriluoto JA
    FEMS Microbiol Lett; 2007 May; 270(1):27-33. PubMed ID: 17263839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of the cyanobacterial toxin microcystin-LR by human probiotics.
    Meriluoto J; Gueimonde M; Haskard CA; Spoof L; Sjövall O; Salminen S
    Toxicon; 2005 Jul; 46(1):111-4. PubMed ID: 15922388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glucose in removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk.
    Nybom SM; Collado MC; Surono IS; Salminen SJ; Meriluoto JA
    J Agric Food Chem; 2008 May; 56(10):3714-20. PubMed ID: 18459790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry.
    Oehrle SA; Southwell B; Westrick J
    Toxicon; 2010 May; 55(5):965-72. PubMed ID: 19878689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of microcystin-LR removal process in the presence of probiotic bacteria.
    Nybom SM; Dziga D; Heikkilä JE; Kull TP; Salminen SJ; Meriluoto JA
    Toxicon; 2012 Jan; 59(1):171-81. PubMed ID: 22115989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Removal of microcystin-LR by lactic acid bacteria].
    Wang S; Zhang J; Wang M; Du G; Chen J
    Wei Sheng Wu Xue Bao; 2010 Jun; 50(6):729-35. PubMed ID: 20687336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxins of cyanobacteria.
    van Apeldoorn ME; van Egmond HP; Speijers GJ; Bakker GJ
    Mol Nutr Food Res; 2007 Jan; 51(1):7-60. PubMed ID: 17195276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl radical oxidation of cylindrospermopsin (cyanobacterial toxin) and its role in the photochemical transformation.
    Song W; Yan S; Cooper WJ; Dionysiou DD; O'Shea KE
    Environ Sci Technol; 2012 Nov; 46(22):12608-15. PubMed ID: 23082747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of multiple cyanobacterial metabolites in drinking water supplies.
    Ho L; Tang T; Monis PT; Hoefel D
    Chemosphere; 2012 Jun; 87(10):1149-54. PubMed ID: 22386459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacterial toxins: biosynthetic routes and evolutionary roots.
    Dittmann E; Fewer DP; Neilan BA
    FEMS Microbiol Rev; 2013 Jan; 37(1):23-43. PubMed ID: 23051004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of 15N-labeled cylindrospermopsin and its application as internal standard in stable isotope dilution analysis.
    Kittler K; Hoffmann H; Lindemann F; Koch M; Rohn S; Maul R
    Anal Bioanal Chem; 2014 Sep; 406(24):5765-74. PubMed ID: 25064600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective doses, guidelines & regulations.
    Burch MD
    Adv Exp Med Biol; 2008; 619():831-53. PubMed ID: 18461792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin.
    de la Cruz AA; Hiskia A; Kaloudis T; Chernoff N; Hill D; Antoniou MG; He X; Loftin K; O'Shea K; Zhao C; Pelaez M; Han C; Lynch TJ; Dionysiou DD
    Environ Sci Process Impacts; 2013 Oct; 15(11):1979-2003. PubMed ID: 24056894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of multiple microcystins and cylindrospermopsin in clarifier sludge and a drinking water source: Effects of particulate attached bacteria and phycocyanin.
    Maghsoudi E; Fortin N; Greer C; Duy SV; Fayad P; Sauvé S; Prévost M; Dorner S
    Ecotoxicol Environ Saf; 2015 Oct; 120():409-17. PubMed ID: 26122734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins.
    Merel S; Walker D; Chicana R; Snyder S; Baurès E; Thomas O
    Environ Int; 2013 Sep; 59():303-27. PubMed ID: 23892224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.
    Rodríguez E; Onstad GD; Kull TP; Metcalf JS; Acero JL; von Gunten U
    Water Res; 2007 Aug; 41(15):3381-93. PubMed ID: 17583762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxic and morphological effects of microcystin-LR, cylindrospermopsin, and their combinations on the human hepatic cell line HepG2.
    Gutiérrez-Praena D; Guzmán-Guillén R; Pichardo S; Moreno FJ; Vasconcelos V; Jos Á; Cameán AM
    Environ Toxicol; 2019 Mar; 34(3):240-251. PubMed ID: 30461177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directing the Heterologous Production of Specific Cyanobacterial Toxin Variants.
    Liu T; Mazmouz R; Ongley SE; Chau R; Pickford R; Woodhouse JN; Neilan BA
    ACS Chem Biol; 2017 Aug; 12(8):2021-2029. PubMed ID: 28570054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies.
    Ho L; Lambling P; Bustamante H; Duker P; Newcombe G
    Water Res; 2011 Apr; 45(9):2954-64. PubMed ID: 21459402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.