These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258 [TBL] [Abstract][Full Text] [Related]
3. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method. Zhao L; He C; Gao Y; Cen L; Cui L; Cao Y J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):26-34. PubMed ID: 18384158 [TBL] [Abstract][Full Text] [Related]
4. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds. Lee EJ; Lee JH; Jin L; Jin OS; Shin YC; Sang JO; Lee J; Hyon SH; Han DW J Nanosci Nanotechnol; 2014 Nov; 14(11):8458-63. PubMed ID: 25958546 [TBL] [Abstract][Full Text] [Related]
5. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819 [TBL] [Abstract][Full Text] [Related]
6. Effect of fiber orientation of collagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications. Full SM; Delman C; Gluck JM; Abdmaulen R; Shemin RJ; Heydarkhan-Hagvall S J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):39-46. PubMed ID: 24757041 [TBL] [Abstract][Full Text] [Related]
7. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Bashur CA; Dahlgren LA; Goldstein AS Biomaterials; 2006 Nov; 27(33):5681-8. PubMed ID: 16914196 [TBL] [Abstract][Full Text] [Related]
8. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Park K; Ju YM; Son JS; Ahn KD; Han DK J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114 [TBL] [Abstract][Full Text] [Related]
9. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716 [TBL] [Abstract][Full Text] [Related]
11. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers. Sun T; Norton D; McKean RJ; Haycock JW; Ryan AJ; MacNeil S Biotechnol Bioeng; 2007 Aug; 97(5):1318-28. PubMed ID: 17171721 [TBL] [Abstract][Full Text] [Related]
12. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro. Duan B; Wu L; Li X; Yuan X; Li X; Zhang Y; Yao K J Biomater Sci Polym Ed; 2007; 18(1):95-115. PubMed ID: 17274454 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
14. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation. Mo X; Weber HJ; Ramakrishna S Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757 [TBL] [Abstract][Full Text] [Related]
15. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches. Sadeghi-Avalshahr AR; Khorsand-Ghayeni M; Nokhasteh S; Molavi AM; Naderi-Meshkin H J Mater Sci Mater Med; 2017 Jan; 28(1):14. PubMed ID: 27995492 [TBL] [Abstract][Full Text] [Related]
18. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Lowery JL; Datta N; Rutledge GC Biomaterials; 2010 Jan; 31(3):491-504. PubMed ID: 19822363 [TBL] [Abstract][Full Text] [Related]
19. Electrospun Matrices for Pelvic Floor Repair: Effect of Fiber Diameter on Mechanical Properties and Cell Behavior. Vashaghian M; Zandieh-Doulabi B; Roovers JP; Smit TH Tissue Eng Part A; 2016 Dec; 22(23-24):1305-1316. PubMed ID: 27676643 [TBL] [Abstract][Full Text] [Related]
20. Development of biodegradable electrospun scaffolds for dermal replacement. Blackwood KA; McKean R; Canton I; Freeman CO; Franklin KL; Cole D; Brook I; Farthing P; Rimmer S; Haycock JW; Ryan AJ; MacNeil S Biomaterials; 2008 Jul; 29(21):3091-104. PubMed ID: 18448164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]