These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 18639927)

  • 21. The biological activities of (1,3)-(1,6)-beta-d-glucan and porous electrospun PLGA membranes containing beta-glucan in human dermal fibroblasts and adipose tissue-derived stem cells.
    Woo YI; Park BJ; Kim HL; Lee MH; Kim J; Yang YI; Kim JK; Tsubaki K; Han DW; Park JC
    Biomed Mater; 2010 Aug; 5(4):044109. PubMed ID: 20683126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds.
    Liu C; Wang C; Zhao Q; Li X; Xu F; Yao X; Wang M
    Biomed Mater; 2018 May; 13(4):044107. PubMed ID: 29537390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications.
    Franco RA; Nguyen TH; Lee BT
    J Mater Sci Mater Med; 2011 Oct; 22(10):2207-18. PubMed ID: 21805330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes.
    Sadeghi AR; Nokhasteh S; Molavi AM; Khorsand-Ghayeni M; Naderi-Meshkin H; Mahdizadeh A
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():130-137. PubMed ID: 27207046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Replicable and shape-controllable fabrication of electrospun fibrous scaffolds for tissue engineering.
    Cho SJ; Nam H; An T; Lim G
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9047-50. PubMed ID: 23447956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes.
    Powell HM; Boyce ST
    J Biomed Mater Res A; 2008 Mar; 84(4):1078-86. PubMed ID: 17685398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture.
    Yang J; Shi G; Bei J; Wang S; Cao Y; Shang Q; Yang G; Wang W
    J Biomed Mater Res; 2002 Dec; 62(3):438-46. PubMed ID: 12209930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, fabrication, and characterization of a composite scaffold for bone tissue engineering.
    Boschetti F; Tomei AA; Turri S; Swartz MA; Levi M
    Int J Artif Organs; 2008 Aug; 31(8):697-707. PubMed ID: 18825642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles.
    Hodge J; Quint C
    J Biomed Mater Res A; 2019 Sep; 107(9):1954-1964. PubMed ID: 31033146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber.
    Hiraoka Y; Kimura Y; Ueda H; Tabata Y
    Tissue Eng; 2003 Dec; 9(6):1101-12. PubMed ID: 14670098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation.
    Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT
    Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decreased fibroblast and increased osteoblast adhesion on nanostructured NaOH-etched PLGA scaffolds.
    Smith LL; Niziolek PJ; Haberstroh KM; Nauman EA; Webster TJ
    Int J Nanomedicine; 2007; 2(3):383-8. PubMed ID: 18019837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of functions and tissue compatibility of poly (D,L-lactic-co-glycolic acid) seeded with human dermal fibroblasts.
    Yang WS; Roh HW; Lee WK; Ryu GH
    J Biomater Sci Polym Ed; 2006; 17(1-2):151-62. PubMed ID: 16411605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.