BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18640045)

  • 1. Development of a receptor-based 3D-QSAR study for the analysis of MMP2, MMP3, and MMP9 inhibitors.
    Tuccinardi T; Nuti E; Ortore G; Rossello A; Avramova SI; Martinelli A
    Bioorg Med Chem; 2008 Aug; 16(16):7749-58. PubMed ID: 18640045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of human carbonic anhydrase II: docking reliability and receptor-based 3D-QSAR study.
    Tuccinardi T; Nuti E; Ortore G; Supuran CT; Rossello A; Martinelli A
    J Chem Inf Model; 2007; 47(2):515-25. PubMed ID: 17295464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors.
    Tuccinardi T; Ortore G; Santos MA; Marques SM; Nuti E; Rossello A; Martinelli A
    J Chem Inf Model; 2009 Jul; 49(7):1715-24. PubMed ID: 19522467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR analysis of some 5-amino-2-mercapto-1,3,4-thiadiazole based inhibitors of matrix metalloproteinases and bacterial collagenase.
    Jamloki A; Karthikeyan C; Hari Narayana Moorthy NS; Trivedi P
    Bioorg Med Chem Lett; 2006 Jul; 16(14):3847-54. PubMed ID: 16682189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and SAR of alpha-sulfonylcarboxylic acids as potent matrix metalloproteinase inhibitors.
    Zhang YM; Fan X; Xiang B; Chakravarty D; Scannevin R; Burke S; Karnachi P; Rhodes K; Jackson P
    Bioorg Med Chem Lett; 2006 Jun; 16(12):3096-100. PubMed ID: 16632358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-alpha-phenylsulfonylacetamide derivatives.
    Fernández M; Caballero J
    Bioorg Med Chem; 2007 Sep; 15(18):6298-310. PubMed ID: 17590339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.
    Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D
    Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the structural determinants for selective inhibition of matrix metalloproteinases.
    Pirard B
    Drug Discov Today; 2007 Aug; 12(15-16):640-6. PubMed ID: 17706545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D QSAR selectivity analyses of carbonic anhydrase inhibitors: insights for the design of isozyme selective inhibitors.
    Weber A; Böhm M; Supuran CT; Scozzafava A; Sotriffer CA; Klebe G
    J Chem Inf Model; 2006; 46(6):2737-60. PubMed ID: 17125213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups.
    Puerta DT; Lewis JA; Cohen SM
    J Am Chem Soc; 2004 Jul; 126(27):8388-9. PubMed ID: 15237990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor-based 3D-QSAR studies of checkpoint Wee1 kinase inhibitors.
    Wichapong K; Lindner M; Pianwanit S; Kokpol S; Sippl W
    Eur J Med Chem; 2009 Apr; 44(4):1383-95. PubMed ID: 18976834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs.
    Cuniasse P; Devel L; Makaritis A; Beau F; Georgiadis D; Matziari M; Yiotakis A; Dive V
    Biochimie; 2005; 87(3-4):393-402. PubMed ID: 15781327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined molecular modeling study on gelatinases and their potent inhibitors.
    Xi L; Du J; Li S; Li J; Liu H; Yao X
    J Comput Chem; 2010 Jan; 31(1):24-42. PubMed ID: 19412908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The significance of matrix metalloproteinases expression in nasal polyps].
    Zhang X; Guo Y; Dong Z
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1999 Dec; 34(6):353-5. PubMed ID: 12764844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new role for old ligands: discerning chelators for zinc metalloproteinases.
    Jacobsen FE; Lewis JA; Cohen SM
    J Am Chem Soc; 2006 Mar; 128(10):3156-7. PubMed ID: 16522091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative structure-activity relationship study on some series of anthranilic acid-based matrix metalloproteinase inhibitors.
    Gupta SP; Kumaran S
    Bioorg Med Chem; 2005 Sep; 13(18):5454-62. PubMed ID: 15993609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-activity relationship studies on zinc-containing metalloproteinase inhibitors.
    Gupta SP
    Chem Rev; 2007 Jul; 107(7):3042-87. PubMed ID: 17622180
    [No Abstract]   [Full Text] [Related]  

  • 18. Novel matrix metalloproteinase inhibitors: generation of lead compounds by the in silico fragment-based approach.
    Takahashi K; Ikura M; Habashita H; Nishizaki M; Sugiura T; Yamamoto S; Nakatani S; Ogawa K; Ohno H; Nakai H; Toda M
    Bioorg Med Chem; 2005 Jul; 13(14):4527-43. PubMed ID: 15908222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel matrix metalloproteinase inhibitors derived from quinoxalinone scaffold (Part I).
    Li Y; Zhang J; Xu W; Zhu H; Li X
    Bioorg Med Chem; 2010 Feb; 18(4):1516-25. PubMed ID: 20097082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural products as a gold mine for selective matrix metalloproteinases inhibitors.
    Wang L; Li X; Zhang S; Lu W; Liao S; Liu X; Shan L; Shen X; Jiang H; Zhang W; Huang J; Li H
    Bioorg Med Chem; 2012 Jul; 20(13):4164-71. PubMed ID: 22658537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.