BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18640068)

  • 1. Model-based blood flow quantification from rotational angiography.
    Waechter I; Bredno J; Hermans R; Weese J; Barratt DC; Hawkes DJ
    Med Image Anal; 2008 Oct; 12(5):586-602. PubMed ID: 18640068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of blood flow from rotational angiography.
    Waechter I; Bredno J; Barratt DC; Weese J; Hawkes DJ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):634-41. PubMed ID: 18051112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using flow information to support 3D vessel reconstruction from rotational angiography.
    Waechter I; Bredno J; Weese J; Barratt DC; Hawkes DJ
    Med Phys; 2008 Jul; 35(7):3302-16. PubMed ID: 18697555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow and velocity estimation based on vessel transit time by combining 2D and 3D X-ray angiography.
    Bogunović H; Loncarić S
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):117-24. PubMed ID: 17354763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal data fusion for 3D+T image reconstruction in cerebral angiography.
    Copeland AD; Mangoubi RS; Desai MN; Mitter SK; Malek AM
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1238-51. PubMed ID: 20172817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation and presentation of blood flow and velocity from angiographic scans in the human cerebral arterial system.
    Wong W; Le TM; Volkau I; Thirunavuukarasuu A; Ng HP; Nowinski WL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4936-9. PubMed ID: 19163824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA).
    Schmitt H; Grass M; Suurmond R; Köhler T; Rasche V; Hähnel S; Heiland S
    Comput Med Imaging Graph; 2005 Oct; 29(7):507-20. PubMed ID: 16140501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative fluorescence angiography for neurosurgical interventions.
    Weichelt C; Duscha P; Steinmeier R; Meyer T; Kuß J; Cimalla P; Kirsch M; Sobottka SB; Koch E; Schackert G; Morgenstern U
    Biomed Tech (Berl); 2013 Jun; 58(3):269-79. PubMed ID: 23740655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four dimensional intravenous cone-beam computed tomographic subtraction angiography. In vitro study of feasibility.
    Pollmann SI; Norley CJ; Pelz DM; Lownie SP; Holdsworth DW
    Invest Radiol; 2008 Nov; 43(11):753-61. PubMed ID: 18923254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping.
    Xu B; Spincemaille P; Liu T; Prince MR; Dutruel S; Gupta A; Thimmappa ND; Wang Y
    Magn Reson Med; 2015 Apr; 73(4):1540-8. PubMed ID: 24733457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time modeling of vascular flow for angiography simulation.
    Wu X; Allard J; Cotin S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):557-65. PubMed ID: 18051103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood velocity assessment using 3D bright-blood time-resolved magnetic resonance angiography.
    Miraux S; Franconi JM; Thiaudière E
    Magn Reson Med; 2006 Sep; 56(3):469-73. PubMed ID: 16902973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast settling in cerebral aneurysm angiography.
    Wang ZJ; Hoffmann KR; Wang Z; Rudin S; Guterman LR; Meng H
    Phys Med Biol; 2005 Jul; 50(13):3171-81. PubMed ID: 15972988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravascular functional maps of common neurovascular lesions derived from volumetric 4D CT data.
    Barfett JJ; Fierstra J; Willems PW; Mikulis DJ; Krings T
    Invest Radiol; 2010 Jul; 45(7):370-7. PubMed ID: 20479649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood velocity calculated from volumetric dynamic computed tomography angiography.
    Barfett JJ; Fierstra J; Mikulis DJ; Krings T
    Invest Radiol; 2010 Dec; 45(12):778-81. PubMed ID: 20829710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow prediction in cerebral aneurysms based on geometry reconstruction from 3D rotational angiography.
    Mikhal J; Kroon DJ; Slump CH; Geurts BJ
    Int J Numer Method Biomed Eng; 2013 Jul; 29(7):777-805. PubMed ID: 23785013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data.
    Rutkowski DR; Roldán-Alzate A; Johnson KM
    Sci Rep; 2021 May; 11(1):10240. PubMed ID: 33986368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase contrast MR imaging measurements of blood flow in healthy human cerebral vessel segments.
    MacDonald ME; Frayne R
    Physiol Meas; 2015 Jul; 36(7):1517-27. PubMed ID: 26020543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide dynamic range high-speed three-dimensional quantitative OCT angiography with a hybrid-beam scan.
    Park T; Jang SJ; Han M; Ryu S; Oh WY
    Opt Lett; 2018 May; 43(10):2237-2240. PubMed ID: 29762561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images.
    Castro MA; Putman CM; Cebral JR
    Acad Radiol; 2006 Jul; 13(7):811-21. PubMed ID: 16777554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.