These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18640071)

  • 1. The significance of the temporal bond polarizabilty relaxation of 2- and 3-aminopyridine by 514.5 nm excitation for the nonresonant Raman virtual states.
    Fang C; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1588-93. PubMed ID: 18640071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The charge shift in the excited virtual state of pyrimidine during the nonresonant Raman process at 632.8 nm: the bond polarizability study.
    Zhao Y; Wang H; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):1175-9. PubMed ID: 17289427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The charge excitation in the Raman process as correlated from a classical theory for Raman optical activity: the case study of (+)-(R)-methyloxirane.
    Fang Y; Wu G; Wang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Mar; 88():216-9. PubMed ID: 22226895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometries and electronic structures of metastable C2N4 and its ions.
    Zhu X; Lu X; Feng X
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):756-61. PubMed ID: 17023194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of sum-frequency vibrational spectroscopy off electronic resonance on limonene chiral liquids.
    Zheng RH; Wei WM
    J Phys Chem B; 2007 Feb; 111(6):1431-7. PubMed ID: 17286355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing graphene edges via Raman scattering.
    Gupta AK; Russin TJ; Gutiérrez HR; Eklund PC
    ACS Nano; 2009 Jan; 3(1):45-52. PubMed ID: 19206247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and vibrational spectra of diphenylmethane.
    Mishra T; De AK; Chattopadhyay S; Mallick PK; Sett P
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):767-76. PubMed ID: 15649813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodissociation of Co-C bond in methyl- and ethylcobalamin: an insight from TD-DFT calculations.
    Lodowski P; Jaworska M; Andruniów T; Kumar M; Kozlowski PM
    J Phys Chem B; 2009 May; 113(19):6898-909. PubMed ID: 19374399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode-selective vibrational redistribution after spectrally selective N-H stretching mode excitation in intermolecular hydrogen bonds.
    Kozich V; Dreyer J; Werncke W
    J Chem Phys; 2009 Jan; 130(3):034505. PubMed ID: 19173529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman intensity interpretation of pyridine liquid and its adsorption on the Ag electrode via bond polarizabilities.
    Fang C; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):948-53. PubMed ID: 20851667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of N-H...O=C intramolecular hydrogen bond energy in polypeptides.
    Deshmukh MM; Gadre SR
    J Phys Chem A; 2009 Jul; 113(27):7927-32. PubMed ID: 19496581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can the nonadiabatic photodynamics of aminopyrimidine be a model for the ultrafast deactivation of adenine?
    Barbatti M; Lischka H
    J Phys Chem A; 2007 Apr; 111(15):2852-8. PubMed ID: 17388405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of an ion-pair molecule with a single NH(+)...Cl(-) hydrogen bond: Raman spectra of 1,1,3,3-tetramethylguanidinium chloride in the solid state, in solution, and in the vapor phase.
    Berg RW; Riisager A; Fehrmann R
    J Phys Chem A; 2008 Sep; 112(37):8585-92. PubMed ID: 18714951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast deactivation processes in aminopyridine clusters: excitation energy dependence and isotope effects.
    Samoylova E; Smith VR; Ritze HH; Radloff W; Kabelac M; Schultz T
    J Am Chem Soc; 2006 Dec; 128(49):15652-6. PubMed ID: 17147374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance hyper-Raman spectra of zinc phthalocyanine.
    Leng W; Myers Kelley A
    J Phys Chem A; 2008 Jul; 112(26):5925-9. PubMed ID: 18537230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation-specific Raman bands and electronic conjugation in substituted thioanisoles.
    Yamakita Y; Okazaki T; Ohno K
    J Phys Chem A; 2008 Nov; 112(47):12220-7. PubMed ID: 18980363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor.
    Das A; Pisana S; Chakraborty B; Piscanec S; Saha SK; Waghmare UV; Novoselov KS; Krishnamurthy HR; Geim AK; Ferrari AC; Sood AK
    Nat Nanotechnol; 2008 Apr; 3(4):210-5. PubMed ID: 18654505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra.
    Liégeois V; Ruud K; Champagne B
    J Chem Phys; 2007 Nov; 127(20):204105. PubMed ID: 18052417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revised vibrational band assignments for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile based on ab initio, DFT and normal coordinate calculations.
    Hiremath CS; Kalkoti GB; Aralakkanavar MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):200-4. PubMed ID: 19560961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometries and electronic properties of carbon-nitrogen clusters C8N4 and C8N4+/-.
    Zhu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1825-9. PubMed ID: 18715822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.