BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 18640291)

  • 1. Versatile architecture of a bacterial aconitase B and its catalytic performance in the sequential reaction coupled with isocitrate dehydrogenase.
    Tsuchiya D; Shimizu N; Tomita M
    Biochim Biophys Acta; 2008 Nov; 1784(11):1847-56. PubMed ID: 18640291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperativity of two active sites in bacterial homodimeric aconitases.
    Tsuchiya D; Shimizu N; Tomita M
    Biochem Biophys Res Commun; 2009 Feb; 379(2):485-8. PubMed ID: 19116142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching aconitase B between catalytic and regulatory modes involves iron-dependent dimer formation.
    Tang Y; Guest JR; Artymiuk PJ; Green J
    Mol Microbiol; 2005 Jun; 56(5):1149-58. PubMed ID: 15882410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E. coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition.
    Williams CH; Stillman TJ; Barynin VV; Sedelnikova SE; Tang Y; Green J; Guest JR; Artymiuk PJ
    Nat Struct Biol; 2002 Jun; 9(6):447-52. PubMed ID: 11992126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of trace metals on cell morphology, enzyme activation, and production of citric acid in a strain of Aspergillus wentii].
    Majolli MV; Aguirre SN
    Rev Argent Microbiol; 1999; 31(2):65-71. PubMed ID: 10425661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
    Cozzone AJ; El-Mansi M
    J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon.
    Vélot C; Mixon MB; Teige M; Srere PA
    Biochemistry; 1997 Nov; 36(47):14271-6. PubMed ID: 9400365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion.
    Varghese S; Tang Y; Imlay JA
    J Bacteriol; 2003 Jan; 185(1):221-30. PubMed ID: 12486059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli.
    el-Mansi EM; Nimmo HG; Holms WH
    J Gen Microbiol; 1986 Mar; 132(3):797-806. PubMed ID: 3525743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-site suppression of regulatory phosphorylation in Escherichia coli isocitrate dehydrogenase.
    Chen R; Grobler JA; Hurley JH; Dean AM
    Protein Sci; 1996 Feb; 5(2):287-95. PubMed ID: 8745407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase Enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate.
    Horswill AR; Escalante-Semerena JC
    Biochemistry; 2001 Apr; 40(15):4703-13. PubMed ID: 11294638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The second aconitase (AcnB) of Escherichia coli.
    Bradbury AJ; Gruer MJ; Rudd KE; Guest JR
    Microbiology (Reading); 1996 Feb; 142 ( Pt 2)():389-400. PubMed ID: 8932712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The iron-sensing aconitase B binds its own mRNA to prevent sRNA-induced mRNA cleavage.
    Benjamin JA; Massé E
    Nucleic Acids Res; 2014 Sep; 42(15):10023-36. PubMed ID: 25092924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis.
    Quartararo CE; Hazra S; Hadi T; Blanchard JS
    Biochemistry; 2013 Mar; 52(10):1765-75. PubMed ID: 23409873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of the substrate specificity of bifunctional isocitrate dehydrogenase kinase/phosphatase.
    Yates SP; Edwards TE; Bryan CM; Stein AJ; Van Voorhis WC; Myler PJ; Stewart LJ; Zheng J; Jia Z
    Biochemistry; 2011 Sep; 50(38):8103-6. PubMed ID: 21870819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization and preliminary X-ray diffraction studies of monomeric isocitrate dehydrogenase from Corynebacterium glutamicum.
    Audette GF; Quail JW; Hayakawa K; Bai C; Chen R; Delbaere LT
    Acta Crystallogr D Biol Crystallogr; 1999 Sep; 55(Pt 9):1584-5. PubMed ID: 10489453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulatory role of Streptomyces coelicolor TamR in central metabolism.
    Huang H; Sivapragasam S; Grove A
    Biochem J; 2015 Mar; 466(2):347-58. PubMed ID: 25494937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tricarboxylic acid cycle in L₃ Teladorsagia circumcincta: metabolism of acetyl CoA to succinyl CoA.
    Simcock DC; Walker LR; Pedley KC; Simpson HV; Brown S
    Exp Parasitol; 2011 May; 128(1):68-75. PubMed ID: 21320492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascade enzymatic reactions for efficient carbon sequestration.
    Xia S; Zhao X; Frigo-Vaz B; Zheng W; Kim J; Wang P
    Bioresour Technol; 2015 Apr; 182():368-372. PubMed ID: 25708541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum.
    Chen R; Yang H
    Arch Biochem Biophys; 2000 Nov; 383(2):238-45. PubMed ID: 11185559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.