These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18640668)

  • 1. Submovement changes characterize generalization of motor recovery after stroke.
    Dipietro L; Krebs HI; Fasoli SE; Volpe BT; Hogan N
    Cortex; 2009 Mar; 45(3):318-24. PubMed ID: 18640668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning, not adaptation, characterizes stroke motor recovery: evidence from kinematic changes induced by robot-assisted therapy in trained and untrained task in the same workspace.
    Dipietro L; Krebs HI; Volpe BT; Stein J; Bever C; Mernoff ST; Fasoli SE; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):48-57. PubMed ID: 22186963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submovements grow larger, fewer, and more blended during stroke recovery.
    Rohrer B; Fasoli S; Krebs HI; Volpe B; Frontera WR; Stein J; Hogan N
    Motor Control; 2004 Oct; 8(4):472-83. PubMed ID: 15585902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement smoothness changes during stroke recovery.
    Rohrer B; Fasoli S; Krebs HI; Hughes R; Volpe B; Frontera WR; Stein J; Hogan N
    J Neurosci; 2002 Sep; 22(18):8297-304. PubMed ID: 12223584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Upper Limb Motor Recovery on Submovement Characteristics among the Patients with Stroke: A Meta-Analysis.
    Naghibi SS; Ghassemi F; Maleki A; Fallah A
    PM R; 2020 Jun; 12(6):589-601. PubMed ID: 31773910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing motor synergies in chronic stroke.
    Dipietro L; Krebs HI; Fasoli SE; Volpe BT; Stein J; Bever C; Hogan N
    J Neurophysiol; 2007 Aug; 98(2):757-68. PubMed ID: 17553941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of submovements in movements of elderly adults.
    Fradet L; Lee G; Dounskaia N
    J Neuroeng Rehabil; 2008 Nov; 5():28. PubMed ID: 19014548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke.
    Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E
    J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociating motor learning from recovery in exoskeleton training post-stroke.
    Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O
    J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-based hand motor therapy after stroke.
    Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC
    Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study.
    Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C
    Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke.
    Roy A; Forrester LW; Macko RF
    J Rehabil Res Dev; 2011; 48(4):417-29. PubMed ID: 21674391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of overlapping submovements in the control of rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2002 Jun; 144(3):351-64. PubMed ID: 12021817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.
    Goodman RN; Rietschel JC; Roy A; Jung BC; Diaz J; Macko RF; Forrester LW
    J Rehabil Res Dev; 2014; 51(2):213-27. PubMed ID: 24933720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment.
    Hardwick RM; Rajan VA; Bastian AJ; Krakauer JW; Celnik PA
    Neurorehabil Neural Repair; 2017 Feb; 31(2):178-189. PubMed ID: 27789762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.