These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18640716)

  • 1. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering.
    Osathanon T; Linnes ML; Rajachar RM; Ratner BD; Somerman MJ; Giachelli CM
    Biomaterials; 2008 Oct; 29(30):4091-9. PubMed ID: 18640716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering.
    Osathanon T; Giachelli CM; Somerman MJ
    Biomaterials; 2009 Sep; 30(27):4513-21. PubMed ID: 19501906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder.
    Smith IO; McCabe LR; Baumann MJ
    Int J Nanomedicine; 2006; 1(2):189-94. PubMed ID: 17722535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration.
    Kim BS; Sung HM; You HK; Lee J
    J Biosci Bioeng; 2014 Oct; 118(4):469-75. PubMed ID: 24768229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds.
    Sun H; Feng K; Hu J; Soker S; Atala A; Ma PX
    Biomaterials; 2010 Feb; 31(6):1133-9. PubMed ID: 19857889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S
    J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.
    Uswatta SP; Okeke IU; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(epsilon-caprolactone) fabricated via co-extrusion and gas foaming.
    Petrie Aronin CE; Cooper JA; Sefcik LS; Tholpady SS; Ogle RC; Botchwey EA
    Acta Biomater; 2008 Sep; 4(5):1187-97. PubMed ID: 18434267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity.
    Claase MB; de Bruijn JD; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2007 Jul; 18(7):1299-307. PubMed ID: 17268874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G; Zhao L; Cui L; Liu W; Cao Y
    Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical and biological characterization of ferromagnetic fiber networks: effect of fibrin deposition on short-term in vitro responses of human osteoblasts.
    Spear RL; Srigengan B; Neelakantan S; Bosbach W; Brooks RA; Markaki AE
    Tissue Eng Part A; 2015 Feb; 21(3-4):463-74. PubMed ID: 25145466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications.
    Erisken C; Kalyon DM; Wang H
    Biomaterials; 2008 Oct; 29(30):4065-73. PubMed ID: 18649939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells.
    Jones JR; Tsigkou O; Coates EE; Stevens MM; Polak JM; Hench LL
    Biomaterials; 2007 Mar; 28(9):1653-63. PubMed ID: 17175022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.