These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 18640776)

  • 1. The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology.
    Olmez T
    J Hazard Mater; 2009 Mar; 162(2-3):1371-8. PubMed ID: 18640776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocoagulation removal of Cr(VI) from simulated wastewater using response surface methodology.
    Bhatti MS; Reddy AS; Thukral AK
    J Hazard Mater; 2009 Dec; 172(2-3):839-46. PubMed ID: 19695770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network.
    Aber S; Amani-Ghadim AR; Mirzajani V
    J Hazard Mater; 2009 Nov; 171(1-3):484-90. PubMed ID: 19589640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.
    Arroyo MG; Pérez-Herranz V; Montañés MT; García-Antón J; Guiñón JL
    J Hazard Mater; 2009 Sep; 169(1-3):1127-33. PubMed ID: 19464794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (VI) removal by Aspergillus lentulus AML05.
    Sharma S; Malik A; Satya S
    J Hazard Mater; 2009 May; 164(2-3):1198-204. PubMed ID: 18976855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa).
    Molokwane PE; Meli KC; Nkhalambayausi-Chirwa EM
    Water Res; 2008 Nov; 42(17):4538-48. PubMed ID: 18760438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Central Composite Design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: modeling, optimization, and study of interactive variables.
    Bajpai S; Gupta SK; Dey A; Jha MK; Bajpai V; Joshi S; Gupta A
    J Hazard Mater; 2012 Aug; 227-228():436-44. PubMed ID: 22698684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.
    Arslan-Alaton I; Kabdaşli I; Vardar B; Tünay O
    J Hazard Mater; 2009 May; 164(2-3):1586-94. PubMed ID: 18849115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.
    Kabdaşli I; Arslan T; Olmez-Hanci T; Arslan-Alaton I; Tünay O
    J Hazard Mater; 2009 Jun; 165(1-3):838-45. PubMed ID: 19046620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation on the new operational parameter effective in Cr(VI) removal efficiency: a study on electrocoagulation by alternating pulse current.
    Keshmirizadeh E; Yousefi S; Rofouei MK
    J Hazard Mater; 2011 Jun; 190(1-3):119-24. PubMed ID: 21531074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exhaustive depletion of recalcitrant chromium fractions in a real wastewater.
    Durante C; Isse AA; Sandonà G; Gennaro A
    Chemosphere; 2010 Jan; 78(5):620-5. PubMed ID: 19913874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.
    Vivek Narayanan N; Ganesan M
    J Hazard Mater; 2009 Jan; 161(1):575-80. PubMed ID: 18485589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading.
    Molokwane PE; Meli CK; Chirwa EM
    Water Sci Technol; 2008; 58(2):399-405. PubMed ID: 18701792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation.
    Adhoum N; Monser L; Bellakhal N; Belgaied JE
    J Hazard Mater; 2004 Aug; 112(3):207-13. PubMed ID: 15302441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of hexavalent chromium removal in a continuous biological filter with the use of central composite design (CCD).
    Dalcin MG; Pirete MM; Lemos DA; Ribeiro EJ; Cardoso VL; de Resende MM
    J Environ Manage; 2011 Apr; 92(4):1165-73. PubMed ID: 21216521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic reduction of Cr(VI) by char/TiO
    Antonopoulou M; Chondrodimou I; Bairamis F; Giannakas A; Konstantinou I
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1063-1072. PubMed ID: 27164883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound mediated reduction of Cr(VI) using sludge obtained during electrocoagulation.
    Kathiravan MN; Muthukumar K
    Environ Technol; 2011 Oct; 32(13-14):1523-31. PubMed ID: 22329143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents.
    Janos P; Hůla V; Bradnová P; Pilarová V; Sedlbauer J
    Chemosphere; 2009 May; 75(6):732-8. PubMed ID: 19215962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.