These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 18640865)
21. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation. Fong J; Crocher V; Tan Y; Oetomo D; Mareels I IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913 [TBL] [Abstract][Full Text] [Related]
22. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
23. [Effects of functional electric stimulation on shoulder subluxation and upper limb motor function recovery of patients with hemiplegia resulting from stroke]. Liu J; You WX; Sun D Di Yi Jun Yi Da Xue Xue Bao; 2005 Aug; 25(8):1054-5. PubMed ID: 16109577 [TBL] [Abstract][Full Text] [Related]
25. On-line 'automatic pilot' training for hand and arm motor rehabilitation after stroke. Zeng J; Sun Y; Jiang L Med Hypotheses; 2011 Feb; 76(2):197-8. PubMed ID: 20971564 [TBL] [Abstract][Full Text] [Related]
26. Motor training of upper extremity with functional electrical stimulation in early stroke rehabilitation. Mangold S; Schuster C; Keller T; Zimmermann-Schlatter A; Ettlin T Neurorehabil Neural Repair; 2009 Feb; 23(2):184-90. PubMed ID: 19189940 [TBL] [Abstract][Full Text] [Related]
27. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors. O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146 [TBL] [Abstract][Full Text] [Related]
28. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
30. Activity-based electrical stimulation training in a stroke patient with minimal movement in the paretic upper extremity. Page SJ; Maslyn S; Hermann VH; Wu A; Dunning K; Levine PG Neurorehabil Neural Repair; 2009; 23(6):595-9. PubMed ID: 19095624 [TBL] [Abstract][Full Text] [Related]
31. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities. Li C; Rusák Z; Horváth I; Ji L Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845 [TBL] [Abstract][Full Text] [Related]
32. Robotic assessment of upper limb motor function after stroke. Balasubramanian S; Colombo R; Sterpi I; Sanguineti V; Burdet E Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S255-69. PubMed ID: 23080041 [TBL] [Abstract][Full Text] [Related]
33. RUPERT closed loop control design. Balasubramanian S; Wei R; He J Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455 [TBL] [Abstract][Full Text] [Related]
34. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. Piron L; Turolla A; Agostini M; Zucconi C; Cortese F; Zampolini M; Zannini M; Dam M; Ventura L; Battauz M; Tonin P J Rehabil Med; 2009 Nov; 41(12):1016-102. PubMed ID: 19841835 [TBL] [Abstract][Full Text] [Related]
35. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders. Hakim RM; Tunis BG; Ross MD Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841 [TBL] [Abstract][Full Text] [Related]
36. Effects of robotic-aided rehabilitation on recovery of upper extremity function in chronic stroke: a single case study. Flinn NA; Smith JL; Tripp CJ; White MW Occup Ther Int; 2009; 16(3-4):232-43. PubMed ID: 19593735 [TBL] [Abstract][Full Text] [Related]
37. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. Masiero S; Carraro E; Ferraro C; Gallina P; Rossi A; Rosati G J Rehabil Med; 2009 Nov; 41(12):981-5. PubMed ID: 19841828 [TBL] [Abstract][Full Text] [Related]
38. Recovery of hand function in virtual reality: Training hemiparetic hand and arm together or separately. Adamovich S; Fluet GG; Merians AS; Mathai A; Qiu Q Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3475-8. PubMed ID: 19163457 [TBL] [Abstract][Full Text] [Related]
39. Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Merians AS; Tunik E; Fluet GG; Qiu Q; Adamovich SV Eur J Phys Rehabil Med; 2009 Mar; 45(1):123-33. PubMed ID: 19158659 [TBL] [Abstract][Full Text] [Related]
40. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot. Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]