These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 18640905)

  • 1. PECB: prediction of enzyme catalytic residues based on Naive Bayes classification.
    Zhang K; Xu Y; Chen G
    Int J Bioinform Res Appl; 2008; 4(3):295-305. PubMed ID: 18640905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting enzyme functional surfaces and locating key residues automatically from structures.
    Tseng YY; Liang J
    Ann Biomed Eng; 2007 Jun; 35(6):1037-42. PubMed ID: 17294116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of recursive convex hull class assignments for protein residues.
    Stout M; Bacardit J; Hirst JD; Krasnogor N
    Bioinformatics; 2008 Apr; 24(7):916-23. PubMed ID: 18252738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of DNA-binding residues from sequence.
    Ofran Y; Mysore V; Rost B
    Bioinformatics; 2007 Jul; 23(13):i347-53. PubMed ID: 17646316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid network for prediction of catalytic residues in enzymes: a comparison survey.
    Zhou J; Yan W; Hu G; Shen B
    Curr Protein Pept Sci; 2016; 17(1):41-51. PubMed ID: 26412789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated substitution analysis and the prediction of amino acid structural contacts.
    Horner DS; Pirovano W; Pesole G
    Brief Bioinform; 2008 Jan; 9(1):46-56. PubMed ID: 18000015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A naive Bayes model to predict coupling between seven transmembrane domain receptors and G-proteins.
    Cao J; Panetta R; Yue S; Steyaert A; Young-Bellido M; Ahmad S
    Bioinformatics; 2003 Jan; 19(2):234-40. PubMed ID: 12538244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.
    Almonacid DE; Yera ER; Mitchell JB; Babbitt PC
    PLoS Comput Biol; 2010 Mar; 6(3):e1000700. PubMed ID: 20300652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm.
    Xue Y; Chen H; Jin C; Sun Z; Yao X
    BMC Bioinformatics; 2006 Oct; 7():458. PubMed ID: 17044919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-stage classifier for identification of protein-protein interface residues.
    Yan C; Dobbs D; Honavar V
    Bioinformatics; 2004 Aug; 20 Suppl 1():i371-8. PubMed ID: 15262822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ISIS: interaction sites identified from sequence.
    Ofran Y; Rost B
    Bioinformatics; 2007 Jan; 23(2):e13-6. PubMed ID: 17237081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable context Markov chains for HIV protease cleavage site prediction.
    Oğul H
    Biosystems; 2009 Jun; 96(3):246-50. PubMed ID: 19758550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of catalytic residue 3D ensembles for the prediction of enzyme function.
    Žváček C; Friedrichs G; Heizinger L; Merkl R
    BMC Bioinformatics; 2015 Nov; 16():359. PubMed ID: 26538500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of catalytic residues in enzyme active sites.
    Bartlett GJ; Porter CT; Borkakoti N; Thornton JM
    J Mol Biol; 2002 Nov; 324(1):105-21. PubMed ID: 12421562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of enzyme mutant activity based on a multibody statistical potential.
    Masso M; Vaisman II
    Bioinformatics; 2007 Dec; 23(23):3155-61. PubMed ID: 17977887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.
    Chou KC
    Bioinformatics; 2005 Jan; 21(1):10-9. PubMed ID: 15308540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.