These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18641070)

  • 21. A model of electrical conduction in cardiac tissue including fibroblasts.
    Sachse FB; Moreno AP; Seemann G; Abildskov JA
    Ann Biomed Eng; 2009 May; 37(5):874-89. PubMed ID: 19283480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model.
    Henriquez CS; Muzikant AL; Smoak CK
    J Cardiovasc Electrophysiol; 1996 May; 7(5):424-44. PubMed ID: 8722588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Model of 3D Propagation in Discrete Cardiac Tissue.
    Stinstra J; Roberts S; Pormann J; Macleod R; Henriquez C
    Comput Cardiol; 2006; 33():41-44. PubMed ID: 17404606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field.
    Franzone PC; Guerri L; Tentoni S
    Math Biosci; 1990 Oct; 101(2):155-235. PubMed ID: 2134484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropic conduction properties of canine ventricular muscles. Influence of high extracellular K+ concentration and stimulation frequency.
    Tsuboi N; Kodama I; Toyama J; Yamada K
    Jpn Circ J; 1985 May; 49(5):487-98. PubMed ID: 4021064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia?
    Johnston BM; Johnston PR
    Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the passive cardiac conductivity.
    Stinstra JG; Hopenfeld B; Macleod RS
    Ann Biomed Eng; 2005 Dec; 33(12):1743-51. PubMed ID: 16389523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation analysis of conduction of excitation in the atrioventricular node.
    Urushibara S; Kawato M; Nakazawa K; Suzuki R
    J Theor Biol; 1987 Jun; 126(3):275-88. PubMed ID: 3657234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation.
    Trayanova NA; Roth BJ; Malden LJ
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of wavefront curvature in propagation of cardiac impulse.
    Fast VG; Kléber AG
    Cardiovasc Res; 1997 Feb; 33(2):258-71. PubMed ID: 9074688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boundary integral formulation for the electrical response of a nerve to an extracellular stimulation.
    Henriquez F; Jerez-Hanckes C; Altermatt MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6207-10. PubMed ID: 24111158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--I: Mathematical formulation.
    Trayanova N
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1129-40. PubMed ID: 9214832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological interaction through the interstitial space between adjacent unmyelinated parallel fibers.
    Barr RC; Plonsey R
    Biophys J; 1992 May; 61(5):1164-75. PubMed ID: 1600078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of conduction slowing during myocardial stretch by ventricular volume loading in the rabbit.
    Mills RW; Narayan SM; McCulloch AD
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H1270-H1278. PubMed ID: 18660447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Propagation in cardiac tissue adjacent to connective tissue: two-dimensional modeling studies.
    Street AM; Plonsey R
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):19-25. PubMed ID: 9919822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: a computer simulation study.
    Henriquez AP; Vogel R; Muller-Borer BJ; Henriquez CS; Weingart R; Cascio WE
    Biophys J; 2001 Oct; 81(4):2112-21. PubMed ID: 11566782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation analysis of excitation conduction in the heart: propagation of excitation in different tissues.
    Kawato M; Yamanaka A; Urushibara S; Nagata O; Irisawa H; Suzuki R
    J Theor Biol; 1986 Jun; 120(4):389-409. PubMed ID: 3795985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.