These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18641145)

  • 21. Exoribonuclease RNase R protects Antarctic
    Mittal P; Sipani R; Pandiyan A; Sulthana S; Sinha AK; Hussain A; Ray MK; Pavankumar TL
    Appl Environ Microbiol; 2023 Nov; 89(11):e0116823. PubMed ID: 37905926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of expression of divergent Pseudomonas putida put promoters for proline catabolism.
    Vílchez S; Manzanera M; Ramos JL
    Appl Environ Microbiol; 2000 Dec; 66(12):5221-5. PubMed ID: 11097893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. rnr gene from the antarctic bacterium Pseudomonas syringae Lz4W, encoding a psychrophilic RNase R.
    Sulthana S; Rajyaguru PI; Mittal P; Ray MK
    Appl Environ Microbiol; 2011 Nov; 77(22):7896-904. PubMed ID: 21926201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R.
    Liang W; Deutscher MP
    J Biol Chem; 2010 Sep; 285(38):29054-8. PubMed ID: 20688916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudomonas putida--a versatile biocatalyst.
    Wackett LP
    Nat Biotechnol; 2003 Feb; 21(2):136-8. PubMed ID: 12560839
    [No Abstract]   [Full Text] [Related]  

  • 26. Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression.
    Fonseca P; Moreno R; Rojo F
    Environ Microbiol; 2013 Jan; 15(1):24-35. PubMed ID: 22360597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases.
    Morales G; Ugidos A; Rojo F
    Environ Microbiol; 2006 Oct; 8(10):1764-74. PubMed ID: 16958757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo 3'-to-5' exoribonuclease targetomes of
    Lécrivain AL; Le Rhun A; Renault TT; Ahmed-Begrich R; Hahnke K; Charpentier E
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11814-11819. PubMed ID: 30381461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R.
    Liang W; Malhotra A; Deutscher MP
    Mol Cell; 2011 Oct; 44(1):160-6. PubMed ID: 21981926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into RNA unwinding and degradation by RNase R.
    Chu LY; Hsieh TJ; Golzarroshan B; Chen YP; Agrawal S; Yuan HS
    Nucleic Acids Res; 2017 Nov; 45(20):12015-12024. PubMed ID: 29036353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.
    Moreno R; Hernández-Arranz S; La Rosa R; Yuste L; Madhushani A; Shingler V; Rojo F
    Environ Microbiol; 2015 Jan; 17(1):105-18. PubMed ID: 24803210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ).
    Liang W; Deutscher MP
    RNA; 2012 Jan; 18(1):37-41. PubMed ID: 22124017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of mRNA Decay in Bacteria.
    Mohanty BK; Kushner SR
    Annu Rev Microbiol; 2016 Sep; 70():25-44. PubMed ID: 27297126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing the Role of Exoribonucleases in the Control of Microbial Gene Expression: Differential RNA-Seq.
    Pobre V; Arraiano CM
    Methods Enzymol; 2018; 612():1-24. PubMed ID: 30502937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli.
    Dressaire C; Pobre V; Laguerre S; Girbal L; Arraiano CM; Cocaign-Bousquet M
    BMC Genomics; 2018 Nov; 19(1):848. PubMed ID: 30486791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of RNase Y in Clostridium perfringens mRNA Decay and Processing.
    Obana N; Nakamura K; Nomura N
    J Bacteriol; 2017 Jan; 199(2):. PubMed ID: 27821608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory mechanisms of exoribonuclease PNPase and regulatory small RNA on T3SS of Dickeya dadantii.
    Zeng Q; Ibekwe AM; Biddle E; Yang CH
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1345-55. PubMed ID: 20831411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of novel non-coding RNAs relevant for the growth of
    Pobre V; Graça-Lopes G; Saramago M; Ankenbauer A; Takors R; Arraiano CM; Viegas SC
    Microbiology (Reading); 2020 Feb; 166(2):149-156. PubMed ID: 31860438
    [No Abstract]   [Full Text] [Related]  

  • 39. Bacillus subtilis YhaM, a member of a new family of 3'-to-5' exonucleases in gram-positive bacteria.
    Oussenko IA; Sanchez R; Bechhofer DH
    J Bacteriol; 2002 Nov; 184(22):6250-9. PubMed ID: 12399495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II.
    Cairrão F; Chora A; Zilhão R; Carpousis AJ; Arraiano CM
    Mol Microbiol; 2001 Mar; 39(6):1550-61. PubMed ID: 11260472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.