These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18641145)

  • 41. Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray.
    Yuste L; Hervás AB; Canosa I; Tobes R; Jiménez JI; Nogales J; Pérez-Pérez MM; Santero E; Díaz E; Ramos JL; de Lorenzo V; Rojo F
    Environ Microbiol; 2006 Jan; 8(1):165-77. PubMed ID: 16343331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth phase-dependent expression profiles of three vital H-NS family proteins encoded on the chromosome of Pseudomonas putida KT2440 and on the pCAR1 plasmid.
    Sun Z; Vasileva D; Suzuki-Minakuchi C; Okada K; Luo F; Igarashi Y; Nojiri H
    BMC Microbiol; 2017 Aug; 17(1):188. PubMed ID: 28851281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis.
    del Castillo T; Ramos JL; Rodríguez-Herva JJ; Fuhrer T; Sauer U; Duque E
    J Bacteriol; 2007 Jul; 189(14):5142-52. PubMed ID: 17483213
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator.
    Moreno R; Rojo F
    J Bacteriol; 2008 Mar; 190(5):1539-45. PubMed ID: 18156252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2.
    Velázquez F; Parro V; de Lorenzo V
    Mol Microbiol; 2005 Sep; 57(6):1557-69. PubMed ID: 16135224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decay of the IS10 antisense RNA by 3' exoribonucleases: evidence that RNase II stabilizes RNA-OUT against PNPase attack.
    Pepe CM; Maslesa-Galić S; Simons RW
    Mol Microbiol; 1994 Sep; 13(6):1133-42. PubMed ID: 7531807
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN.
    Hossain ST; Malhotra A; Deutscher MP
    J Biol Chem; 2016 Apr; 291(15):7877-87. PubMed ID: 26872969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A tricistronic heat shock operon is important for stress tolerance of Pseudomonas putida and conserved in many environmental bacteria.
    Krajewski SS; Joswig M; Nagel M; Narberhaus F
    Environ Microbiol; 2014 Jun; 16(6):1835-53. PubMed ID: 24612349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover.
    Bollenbach TJ; Schuster G; Stern DB
    Prog Nucleic Acid Res Mol Biol; 2004; 78():305-37. PubMed ID: 15210334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner.
    Richards J; Mehta P; Karzai AW
    Mol Microbiol; 2006 Dec; 62(6):1700-12. PubMed ID: 17087776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The structure and enzymatic properties of a novel RNase II family enzyme from Deinococcus radiodurans.
    Schmier BJ; Seetharaman J; Deutscher MP; Hunt JF; Malhotra A
    J Mol Biol; 2012 Jan; 415(3):547-59. PubMed ID: 22133431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes.
    Kim J; Oliveros JC; Nikel PI; de Lorenzo V; Silva-Rocha R
    Environ Microbiol Rep; 2013 Dec; 5(6):883-91. PubMed ID: 24249296
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways.
    del Castillo T; Ramos JL
    J Bacteriol; 2007 Sep; 189(18):6602-10. PubMed ID: 17616587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of mutations in the Pseudomonas putida miaA gene: regulation of the trpE and trpGDC operons in P. putida by attenuation.
    Olekhnovich I; Gussin GN
    J Bacteriol; 2001 May; 183(10):3256-60. PubMed ID: 11325956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa.
    Hoffmann N; Rehm BH
    FEMS Microbiol Lett; 2004 Aug; 237(1):1-7. PubMed ID: 15268931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA.
    Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM
    Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA.
    Hernández-Arranz S; Sánchez-Hevia D; Rojo F; Moreno R
    RNA; 2016 Dec; 22(12):1902-1917. PubMed ID: 27777366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Participation of 3'-to-5' exoribonucleases in the turnover of Bacillus subtilis mRNA.
    Oussenko IA; Abe T; Ujiie H; Muto A; Bechhofer DH
    J Bacteriol; 2005 Apr; 187(8):2758-67. PubMed ID: 15805522
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate recognition and catalysis by the exoribonuclease RNase R.
    Vincent HA; Deutscher MP
    J Biol Chem; 2006 Oct; 281(40):29769-75. PubMed ID: 16893880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.
    Bojanovič K; D'Arrigo I; Long KS
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.