These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18641656)

  • 1. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model.
    Delmas C; Maccario M; Croguennec L; Le Cras F; Weill F
    Nat Mater; 2008 Aug; 7(8):665-71. PubMed ID: 18641656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries.
    Ellis BL; Makahnouk WR; Makimura Y; Toghill K; Nazar LF
    Nat Mater; 2007 Oct; 6(10):749-53. PubMed ID: 17828278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.
    Wang F; Robert R; Chernova NA; Pereira N; Omenya F; Badway F; Hua X; Ruotolo M; Zhang R; Wu L; Volkov V; Su D; Key B; Whittingham MS; Grey CP; Amatucci GG; Zhu Y; Graetz J
    J Am Chem Soc; 2011 Nov; 133(46):18828-36. PubMed ID: 21894971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LiFePO4 mesocrystals for lithium-ion batteries.
    Popovic J; Demir-Cakan R; Tornow J; Morcrette M; Su DS; Schlögl R; Antonietti M; Titirici MM
    Small; 2011 Apr; 7(8):1127-35. PubMed ID: 21449048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.
    Nishimura S; Nakamura M; Natsui R; Yamada A
    J Am Chem Soc; 2010 Oct; 132(39):13596-7. PubMed ID: 20831186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental visualization of lithium diffusion in LixFePO4.
    Nishimura S; Kobayashi G; Ohoyama K; Kanno R; Yashima M; Yamada A
    Nat Mater; 2008 Sep; 7(9):707-11. PubMed ID: 18690238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods.
    Li W; Cheng F; Tao Z; Chen J
    J Phys Chem B; 2006 Jan; 110(1):119-24. PubMed ID: 16471508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic solubility limits in nanosized olivine LiFePO4.
    Wagemaker M; Singh DP; Borghols WJ; Lafont U; Haverkate L; Peterson VK; Mulder FM
    J Am Chem Soc; 2011 Jul; 133(26):10222-8. PubMed ID: 21598941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reaction mechanism of a complex intercalation system: in situ X-ray diffraction studies of the chemical and electrochemical lithium intercalation in Cr4TiSe8.
    Behrens M; Kiebach R; Ophey J; Riemenschneider O; Bensch W
    Chemistry; 2006 Aug; 12(24):6348-55. PubMed ID: 16721885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy.
    Wang J; Chen-Wiegart YC; Wang J
    Nat Commun; 2014 Aug; 5():4570. PubMed ID: 25087693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminium-doped LiFePO4 single crystals. Part I. Growth, characterization and total conductivity.
    Amin R; Lin C; Maier J
    Phys Chem Chem Phys; 2008 Jun; 10(24):3519-23. PubMed ID: 18548157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes.
    Lee YJ; Yi H; Kim WJ; Kang K; Yun DS; Strano MS; Ceder G; Belcher AM
    Science; 2009 May; 324(5930):1051-5. PubMed ID: 19342549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LiMSO(4)F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope.
    Frayret C; Villesuzanne A; Spaldin N; Bousquet E; Chotard JN; Recham N; Tarascon JM
    Phys Chem Chem Phys; 2010 Dec; 12(47):15512-22. PubMed ID: 20976361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-network electronic conduction in iron and nickel olivine phosphates.
    Herle PS; Ellis B; Coombs N; Nazar LF
    Nat Mater; 2004 Mar; 3(3):147-52. PubMed ID: 14991015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of tetrahedral LiFeO2 and its behavior as a cathode in rechargeable lithium batteries.
    Armstrong AR; Tee DW; La Mantia F; Novák P; Bruce PG
    J Am Chem Soc; 2008 Mar; 130(11):3554-9. PubMed ID: 18284239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale visualization of redox activity at lithium-ion battery cathodes.
    Takahashi Y; Kumatani A; Munakata H; Inomata H; Ito K; Ino K; Shiku H; Unwin PR; Korchev YE; Kanamura K; Matsue T
    Nat Commun; 2014 Nov; 5():5450. PubMed ID: 25399818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-Ion Intercalation Mechanism in MXene Nanosheets.
    Kajiyama S; Szabova L; Sodeyama K; Iinuma H; Morita R; Gotoh K; Tateyama Y; Okubo M; Yamada A
    ACS Nano; 2016 Mar; 10(3):3334-41. PubMed ID: 26891421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomaterials for rechargeable lithium batteries.
    Bruce PG; Scrosati B; Tarascon JM
    Angew Chem Int Ed Engl; 2008; 47(16):2930-46. PubMed ID: 18338357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy.
    Wang F; Graetz J; Moreno MS; Ma C; Wu L; Volkov V; Zhu Y
    ACS Nano; 2011 Feb; 5(2):1190-7. PubMed ID: 21218844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.