BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 18641704)

  • 1. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1,3-glucanase production.
    Aktuganov G; Melentjev A; Galimzianova N; Khalikova E; Korpela T; Susi P
    Can J Microbiol; 2008 Jul; 54(7):577-87. PubMed ID: 18641704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908.
    Kim PI; Chung KC
    FEMS Microbiol Lett; 2004 May; 234(1):177-83. PubMed ID: 15109737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen.
    Nagarajkumar M; Bhaskaran R; Velazhahan R
    Microbiol Res; 2004; 159(1):73-81. PubMed ID: 15160609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol of anthracnose in pepper using chitinase, beta-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224.
    Lee SY; Tindwa H; Lee YS; Naing KW; Hong SH; Nam Y; Kim KY
    J Microbiol Biotechnol; 2012 Oct; 22(10):1359-66. PubMed ID: 23075786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The study of mycolytic properties of aerobic spore-forming bacteria producing extracellular chitinases].
    Aktuganov GE; Melent'ev AI; Galimzianova NF; Shirokov AV
    Mikrobiologiia; 2008; 77(6):788-97. PubMed ID: 19137718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitinase and beta-1,3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens.
    Chatterton S; Punja ZK
    Can J Microbiol; 2009 Apr; 55(4):356-67. PubMed ID: 19396235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal cell-wall lytic enzymes, antifungal metabolite(s) production, and characterization from Streptomyces exfoliatus MT9 for controlling fruit-rotting fungi.
    Choudhary B; Nagpure A; Gupta RK
    J Basic Microbiol; 2014 Dec; 54(12):1295-309. PubMed ID: 25143015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential fungal inhibition by immobilized hydrolytic enzymes from Trichoderma asperellum.
    Silva BD; Ulhoa CJ; Batista KA; Yamashita F; Fernandes KF
    J Agric Food Chem; 2011 Aug; 59(15):8148-54. PubMed ID: 21726085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-1,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi.
    Xu T; Zhu T; Li S
    World J Microbiol Biotechnol; 2016 Feb; 32(2):26. PubMed ID: 26745986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain.
    Hoster F; Schmitz JE; Daniel R
    Appl Microbiol Biotechnol; 2005 Jan; 66(4):434-42. PubMed ID: 15290142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Optimization for Coproduction of Chitinase and Beta 1, 4-Endoglucanase by Chitinolytic Paenibacillus elgii PB1 Having Antifungal Activity.
    Philip NV; Koteshwara A; Kiran GA; Raja S; Subrahmanyam VM; Chandrashekar HR
    Appl Biochem Biotechnol; 2020 May; 191(1):135-150. PubMed ID: 31989438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls].
    Aktuganov GE; Galimzianova NF; Melent'ev AI; Kuz'mina LIu
    Mikrobiologiia; 2007; 76(4):471-9. PubMed ID: 17974203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2.
    Ghasemi S; Ahmadian G; Sadeghi M; Zeigler DR; Rahimian H; Ghandili S; Naghibzadeh N; Dehestani A
    Enzyme Microb Technol; 2011 Mar; 48(3):225-31. PubMed ID: 22112904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential.
    Prasanna L; Eijsink VG; Meadow R; Gåseidnes S
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1601-11. PubMed ID: 22543421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Prokaryotic expressed trichosanthin and other two proteins have anti-fungal activity in vitro].
    Hu P; An C; Li Y; Chen Z
    Wei Sheng Wu Xue Bao; 1999 Jun; 39(3):234-40. PubMed ID: 12555540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection.
    Slimene IB; Tabbene O; Gharbi D; Mnasri B; Schmitter JM; Urdaci MC; Limam F
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3494-506. PubMed ID: 25666369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro.
    Seo DJ; Lee YS; Kim KY; Jung WJ
    Microb Pathog; 2016 Jul; 96():10-4. PubMed ID: 27133265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene.
    Chen CY; Wang YH; Huang CJ
    Can J Microbiol; 2004 Jun; 50(6):451-4. PubMed ID: 15284891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a chitinase (Chit62) from Serratia marcescens B4A and its efficacy as a bioshield against plant fungal pathogens.
    Babashpour S; Aminzadeh S; Farrokhi N; Karkhane A; Haghbeen K
    Biochem Genet; 2012 Oct; 50(9-10):722-35. PubMed ID: 22555558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The role of chitinase in antifungal activity of Bacillus sp. 739].
    Melen'tiev AI; Aktuganov GE; Galimzianova NF
    Mikrobiologiia; 2001; 70(5):636-41. PubMed ID: 11763782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.