These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18641976)

  • 41. Fixation target representation in prefrontal cortex during the antisaccade task.
    Zhou X; Constantinidis C
    J Neurophysiol; 2017 Jun; 117(6):2152-2162. PubMed ID: 28228585
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance.
    Amador N; Schlag-Rey M; Schlag J
    J Neurophysiol; 2004 Apr; 91(4):1672-89. PubMed ID: 14645374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of TMS over dorsolateral prefrontal cortex on trans-saccadic memory of multiple objects.
    Tanaka LL; Dessing JC; Malik P; Prime SL; Crawford JD
    Neuropsychologia; 2014 Oct; 63():185-93. PubMed ID: 25192630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Saccade reaction times are influenced by caudate microstimulation following and prior to visual stimulus appearance.
    Watanabe M; Munoz DP
    J Cogn Neurosci; 2011 Jul; 23(7):1794-807. PubMed ID: 20666599
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of caudate microstimulation on spontaneous and purposive saccades.
    Watanabe M; Munoz DP
    J Neurophysiol; 2013 Jul; 110(2):334-43. PubMed ID: 23636720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K; Igaki S; Funahashi S
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrical stimulation of macaque lateral prefrontal cortex modulates oculomotor behavior indicative of a disruption of top-down attention.
    Schwedhelm P; Baldauf D; Treue S
    Sci Rep; 2017 Dec; 7(1):17715. PubMed ID: 29255155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of stimulus probability on anti-saccade error rates.
    Koval MJ; Ford KA; Everling S
    Exp Brain Res; 2004 Nov; 159(2):268-72. PubMed ID: 15549282
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.
    Supèr H; Lamme VA
    Cereb Cortex; 2007 Jun; 17(6):1468-75. PubMed ID: 16920884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Saccade landing point selection and the competition account of pro- and antisaccade generation: the involvement of visual attention--a review.
    Kristjánsson A
    Scand J Psychol; 2007 Apr; 48(2):97-113. PubMed ID: 17430363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task.
    Witiuk K; Fernandez-Ruiz J; McKee R; Alahyane N; Coe BC; Melanson M; Munoz DP
    J Neurosci; 2014 Oct; 34(43):14260-71. PubMed ID: 25339740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Is the relationship of prosaccade reaction times and antisaccade errors mediated by working memory?
    Crawford TJ; Parker E; Solis-Trapala I; Mayes J
    Exp Brain Res; 2011 Feb; 208(3):385-97. PubMed ID: 21107543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dissociation of the rostral and dorsolateral prefrontal cortex during sequence learning in saccades: a TMS investigation.
    Burke MR; Coats RO
    Exp Brain Res; 2016 Feb; 234(2):597-604. PubMed ID: 26563164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of the lateral prefrontal cortex in conditional suppression of gaze shift.
    Kuwajima M; Sawaguchi T
    Neurosci Res; 2007 Dec; 59(4):431-45. PubMed ID: 17905458
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task.
    Fernandez-Ruiz J; Peltsch A; Alahyane N; Brien DC; Coe BC; Garcia A; Munoz DP
    Neuroimage; 2018 Jan; 165():92-101. PubMed ID: 28988829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of pre-cues on voluntary and reflexive saccade generation. I. Anti-cues for pro-saccades.
    Fischer B; Weber H
    Exp Brain Res; 1998 Jun; 120(4):403-16. PubMed ID: 9655226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the development of voluntary and reflexive components in human saccade generation.
    Fischer B; Biscaldi M; Gezeck S
    Brain Res; 1997 Apr; 754(1-2):285-97. PubMed ID: 9134986
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of repetitive transcranial magnetic stimulation on saccades in depression: a pilot study.
    Crevits L; Van den Abbeele D; Audenaert K; Goethals M; Dierick M
    Psychiatry Res; 2005 Jun; 135(2):113-9. PubMed ID: 15919118
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduced attentional engagement contributes to deficits in prefrontal inhibitory control in schizophrenia.
    Reilly JL; Harris MS; Khine TT; Keshavan MS; Sweeney JA
    Biol Psychiatry; 2008 Apr; 63(8):776-83. PubMed ID: 18191110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.