These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 18642066)
1. Fluorescence quenching of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by silver nanoparticles: size effect. Umadevi M; Vanelle P; Terme T; Rajkumar BJ; Ramakrishnan V J Fluoresc; 2009 Jan; 19(1):3-10. PubMed ID: 18642066 [TBL] [Abstract][Full Text] [Related]
2. Influence of silver nanoparticles on 2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone. Umadevi M; Sridevi NA; Sharmila AS; Rajkumar BJ; Mary MB; Vanelle P; Terme T; Khoumeri O J Fluoresc; 2010 Jan; 20(1):153-61. PubMed ID: 19705260 [TBL] [Abstract][Full Text] [Related]
3. The quenching effect of silver nanoparticles on 2-amino-3-bromo-1, 4-naphthoquinone using fluorescence spectroscopy. Manikandan P; Pushpam S; Sasirekha V; Rani JS; Ramakrishnan V Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():276-81. PubMed ID: 24252292 [TBL] [Abstract][Full Text] [Related]
4. Spectral investigations on N-(2-methylthiophenyl)-2-hydroxy-1-naphthaldimine by silver nanoparticles: quenching. Manikandan P; Ramakrishnan V J Fluoresc; 2011 Mar; 21(2):693-9. PubMed ID: 21052811 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles. Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788 [TBL] [Abstract][Full Text] [Related]
6. Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC. Raghavendra UP; Basanagouda M; Thipperudrappa J Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():350-9. PubMed ID: 26056986 [TBL] [Abstract][Full Text] [Related]
7. Spectral investigations of solvatochromism and preferential solvation on 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone. Umadevi M; Vanelle P; Terme T; Rajkumar BJ; Ramakrishnan V J Fluoresc; 2008 Nov; 18(6):1139-49. PubMed ID: 18792764 [TBL] [Abstract][Full Text] [Related]
8. Interaction of glucose-derived carbon quantum dots with silver and gold nanoparticles and its application for the fluorescence detection of 6-thioguanine. Amjadi M; Shokri R; Hallaj T Luminescence; 2017 May; 32(3):292-297. PubMed ID: 27406471 [TBL] [Abstract][Full Text] [Related]
9. Fluorimetric Studies of a Transmembrane Protein and Its Interactions with Differently Functionalized Silver Nanoparticles. Gambucci M; Tarpani L; Zampini G; Massaro G; Nocchetti M; Sassi P; Latterini L J Phys Chem B; 2018 Jul; 122(27):6872-6879. PubMed ID: 29911868 [TBL] [Abstract][Full Text] [Related]
10. SERS investigations on orientation of 2-bromo-3-methyl-1,4-dimethoxy-9,10-anthraquinone on silver nanoparticles. Anuratha M; Jawahar A; Umadevi M; Sathe VG; Vanelle P; Terme T; Khoumeri O; Meenakumari V; Milton Franklin Benial A Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():558-63. PubMed ID: 25983057 [TBL] [Abstract][Full Text] [Related]
11. Investigating the Effect of Silver Nanoparticles on the Fluorescence Intensity of Bambuterol and its Active Metabolite Terbutaline Using FRET. Abd Elhaleem SM; Elsebaei F; Shalan S; Belal F J Fluoresc; 2023 Sep; 33(5):1717-1725. PubMed ID: 36826730 [TBL] [Abstract][Full Text] [Related]
12. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles. Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962 [TBL] [Abstract][Full Text] [Related]
13. On the fluorescence of luminol in a silver nanoparticles complex. Voicescu M; Ionescu S J Fluoresc; 2013 May; 23(3):569-74. PubMed ID: 23463296 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic Surface of Metallic Gold and Silver Nanoparticles Induced Fluorescence Quenching of Meso-Terakis (4-Sulfonatophenyl) Porphyrin (TPPS) and Theoretical-Experimental Comparable. Aboalhassan AA; El-Daly SA; Ebeid EM; Sakr MAS J Fluoresc; 2022 Nov; 32(6):2257-2269. PubMed ID: 36045307 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles. Sabatini CA; Pereira RV; Gehlen MH J Fluoresc; 2007 Jul; 17(4):377-82. PubMed ID: 17549612 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of triangular silver nanoprisms and spectroscopic analysis on the interaction with bovine serum albumin. Xu X; Du Z; Wu W; Wang Y; Zhang B; Mao X; Jiang L; Yang J; Hou S Anal Bioanal Chem; 2017 Sep; 409(22):5327-5336. PubMed ID: 28687884 [TBL] [Abstract][Full Text] [Related]
17. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. Kamshad M; Jahanshah Talab M; Beigoli S; Sharifirad A; Chamani J J Biomol Struct Dyn; 2019 May; 37(8):2030-2040. PubMed ID: 29757090 [TBL] [Abstract][Full Text] [Related]
18. Green synthesis of biogenic silver nanoparticles using Solanum tuberosum extract and their interaction with human serum albumin: Evidence of "corona" formation through a multi-spectroscopic and molecular docking analysis. Ali MS; Altaf M; Al-Lohedan HA J Photochem Photobiol B; 2017 Aug; 173():108-119. PubMed ID: 28570906 [TBL] [Abstract][Full Text] [Related]
19. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles. Contado C; Argazzi R; Amendola V J Chromatogr A; 2016 Nov; 1471():178-185. PubMed ID: 27756476 [TBL] [Abstract][Full Text] [Related]
20. Human serum albumin-malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques. Baghaee PT; Divsalar A; Chamani J; Donya A J Biomol Struct Dyn; 2019 Jun; 37(9):2254-2264. PubMed ID: 30035667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]