BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18642066)

  • 1. Fluorescence quenching of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by silver nanoparticles: size effect.
    Umadevi M; Vanelle P; Terme T; Rajkumar BJ; Ramakrishnan V
    J Fluoresc; 2009 Jan; 19(1):3-10. PubMed ID: 18642066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of silver nanoparticles on 2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone.
    Umadevi M; Sridevi NA; Sharmila AS; Rajkumar BJ; Mary MB; Vanelle P; Terme T; Khoumeri O
    J Fluoresc; 2010 Jan; 20(1):153-61. PubMed ID: 19705260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The quenching effect of silver nanoparticles on 2-amino-3-bromo-1, 4-naphthoquinone using fluorescence spectroscopy.
    Manikandan P; Pushpam S; Sasirekha V; Rani JS; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():276-81. PubMed ID: 24252292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral investigations on N-(2-methylthiophenyl)-2-hydroxy-1-naphthaldimine by silver nanoparticles: quenching.
    Manikandan P; Ramakrishnan V
    J Fluoresc; 2011 Mar; 21(2):693-9. PubMed ID: 21052811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles.
    Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC.
    Raghavendra UP; Basanagouda M; Thipperudrappa J
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():350-9. PubMed ID: 26056986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral investigations of solvatochromism and preferential solvation on 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone.
    Umadevi M; Vanelle P; Terme T; Rajkumar BJ; Ramakrishnan V
    J Fluoresc; 2008 Nov; 18(6):1139-49. PubMed ID: 18792764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of glucose-derived carbon quantum dots with silver and gold nanoparticles and its application for the fluorescence detection of 6-thioguanine.
    Amjadi M; Shokri R; Hallaj T
    Luminescence; 2017 May; 32(3):292-297. PubMed ID: 27406471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorimetric Studies of a Transmembrane Protein and Its Interactions with Differently Functionalized Silver Nanoparticles.
    Gambucci M; Tarpani L; Zampini G; Massaro G; Nocchetti M; Sassi P; Latterini L
    J Phys Chem B; 2018 Jul; 122(27):6872-6879. PubMed ID: 29911868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS investigations on orientation of 2-bromo-3-methyl-1,4-dimethoxy-9,10-anthraquinone on silver nanoparticles.
    Anuratha M; Jawahar A; Umadevi M; Sathe VG; Vanelle P; Terme T; Khoumeri O; Meenakumari V; Milton Franklin Benial A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():558-63. PubMed ID: 25983057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the Effect of Silver Nanoparticles on the Fluorescence Intensity of Bambuterol and its Active Metabolite Terbutaline Using FRET.
    Abd Elhaleem SM; Elsebaei F; Shalan S; Belal F
    J Fluoresc; 2023 Sep; 33(5):1717-1725. PubMed ID: 36826730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles.
    Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH
    Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the fluorescence of luminol in a silver nanoparticles complex.
    Voicescu M; Ionescu S
    J Fluoresc; 2013 May; 23(3):569-74. PubMed ID: 23463296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Surface of Metallic Gold and Silver Nanoparticles Induced Fluorescence Quenching of Meso-Terakis (4-Sulfonatophenyl) Porphyrin (TPPS) and Theoretical-Experimental Comparable.
    Aboalhassan AA; El-Daly SA; Ebeid EM; Sakr MAS
    J Fluoresc; 2022 Nov; 32(6):2257-2269. PubMed ID: 36045307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles.
    Sabatini CA; Pereira RV; Gehlen MH
    J Fluoresc; 2007 Jul; 17(4):377-82. PubMed ID: 17549612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of triangular silver nanoprisms and spectroscopic analysis on the interaction with bovine serum albumin.
    Xu X; Du Z; Wu W; Wang Y; Zhang B; Mao X; Jiang L; Yang J; Hou S
    Anal Bioanal Chem; 2017 Sep; 409(22):5327-5336. PubMed ID: 28687884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes.
    Kamshad M; Jahanshah Talab M; Beigoli S; Sharifirad A; Chamani J
    J Biomol Struct Dyn; 2019 May; 37(8):2030-2040. PubMed ID: 29757090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of biogenic silver nanoparticles using Solanum tuberosum extract and their interaction with human serum albumin: Evidence of "corona" formation through a multi-spectroscopic and molecular docking analysis.
    Ali MS; Altaf M; Al-Lohedan HA
    J Photochem Photobiol B; 2017 Aug; 173():108-119. PubMed ID: 28570906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.
    Contado C; Argazzi R; Amendola V
    J Chromatogr A; 2016 Nov; 1471():178-185. PubMed ID: 27756476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human serum albumin-malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques.
    Baghaee PT; Divsalar A; Chamani J; Donya A
    J Biomol Struct Dyn; 2019 Jun; 37(9):2254-2264. PubMed ID: 30035667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.