These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 18642153)

  • 1. Comparison of effectiveness of removal of nuisance anions by metalloligs, metal derivatives of Octolig.
    Martin DF; Aguinaldo JS; Kondis NP; Stull FW; O'Donnell LF; Martin BB; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Sep; 43(11):1296-302. PubMed ID: 18642153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of selected nuisance anions by Octolig.
    Martin DF; Lizardi CL; Schulman E; Vo B; Wynn D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan; 45(9):1144-9. PubMed ID: 20560089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig.
    Stull FW; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1545-50. PubMed ID: 20183512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of removal of aqueous perchlorate by Cuprilig, a copper(II) derivative of Octolig.
    Martin DF; Kondis NP; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):188-91. PubMed ID: 19123099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of nuisance aqueous anions with Ferrilig.
    Martin DF; O'Donnell LF; Martin BB; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):700-4. PubMed ID: 18444071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of pain-relieving drugs from aqueous solutions using Octolig and selected metalloligs.
    Martin DF; Sehgal T; Word TA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(8):788-93. PubMed ID: 26030684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of anion removal capacities of Octolig and Cuprilig.
    Martin DF; Franz DM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1619-24. PubMed ID: 22077670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of removal of a popular NSAID from aqueous solutions with metalloligs.
    Martin DF; Hurst J; Mayers J; McKeithan CF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):782-785. PubMed ID: 31046561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced removal of aqueous BPA model compounds using Metalloligs.
    Franz DM; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):307-12. PubMed ID: 24279622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of aqueous arsenic using iron attached to immobilized ligands (IMLIGs).
    Martin DF; O'Donnell L; Martin BB; Alldredge R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jan; 42(1):97-102. PubMed ID: 17129954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efforts to remove aqueous lithium ion using Octolig® and methylated derivatives.
    Martin DF; Bisht KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):946-949. PubMed ID: 29775126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of selected NSAIDs (nonsteroidal anti-inflammatory drugs) in aqueous samples by Octolig®.
    Martin DF; Martin JM; Word TA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jan; 51(2):186-191. PubMed ID: 26606390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion.
    Ho WS
    Ann N Y Acad Sci; 2003 Mar; 984():97-122. PubMed ID: 12783813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of common metal ions on the determination of anions by suppressed ion chromatography.
    Ding Y; Mou S
    J Chromatogr A; 2002 May; 956(1-2):65-70. PubMed ID: 12108669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of oxyanions from synthetic wastewater via carbonation process of calcium hydroxide: applied and fundamental aspects.
    Montes-Hernandez G; Concha-Lozano N; Renard F; Quirico E
    J Hazard Mater; 2009 Jul; 166(2-3):788-95. PubMed ID: 19135792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of BPA model compounds and related substances by means of column chromatography using Octolig®.
    Alessio RJ; Li X; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(14):2198-204. PubMed ID: 22934990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospray ionization-ion mobility spectrometry: a rapid analytical method for aqueous nitrate and nitrite analysis.
    Dwivedi P; Matz LM; Atkinson DA; Hill HH
    Analyst; 2004 Feb; 129(2):139-44. PubMed ID: 14752557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.
    Namasivayam C; Sangeetha D
    J Hazard Mater; 2006 Jul; 135(1-3):449-52. PubMed ID: 16406295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New polymer-supported ion-complexing agents: design, preparation and metal ion affinities of immobilized ligands.
    Alexandratos SD
    J Hazard Mater; 2007 Jan; 139(3):467-70. PubMed ID: 16762497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.