These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18642272)

  • 1. Relevance of rheological properties of gel beads for their mechanical stability in bioreactors.
    Martins Dos Santos VA; Leenen EJ; Rippoll MM; van der Sluis C; van Vliet T; Tramper J; Wijffels RH
    Biotechnol Bioeng; 1997 Dec; 56(5):517-29. PubMed ID: 18642272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological properties and mechanical stability of new gel-entrapment systems applied in bioreactors.
    Vogelsang C; Wijffels RH; Ostgaard K
    Biotechnol Bioeng; 2000 Nov; 70(3):247-53. PubMed ID: 10992228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kappa-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2,4,6-trichlorophenol under air-limited conditions.
    Gardin H; Pauss A
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):517-23. PubMed ID: 11549031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of kappa-carrageenan gel with polymeric amines: Use of immobilized cells as biocatalysts at elevated temperatures.
    Chao KC; Haugen MM; Royer GP
    Biotechnol Bioeng; 1986 Sep; 28(9):1289-93. PubMed ID: 18561217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology.
    Lamboley L; Lacroix C; Champagne CP; Vuillemard JC
    Biotechnol Bioeng; 1997 Dec; 56(5):502-16. PubMed ID: 18642271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term mechanical and biological stability of an immobilized cell reactor for continuous mixed-strain mesophilic lactic starter production in whey permeate.
    Lamboley L; Lacroix C; Artignan JM; Champagne CP; Vuillemard JC
    Biotechnol Prog; 1999 Jul; 15(4):646-54. PubMed ID: 10441356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of stable agar/carrageenan-Fe
    Fang Y; Hu J; Wang H; Chen D; Zhang A; Wang X; Ni Y
    Environ Res; 2022 Apr; 205():112454. PubMed ID: 34856163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological sulfide oxidation using autotrophic Thiobacillus sp.: evaluation of different immobilization methods and bioreactors.
    Ravichandra P; Gopal M; Annapurna J
    J Appl Microbiol; 2009 Apr; 106(4):1280-91. PubMed ID: 19187143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of kappa-carrageenan gels used for immobilization of Bacillus firmus.
    Moon SH; Parulekar SJ
    Biotechnol Prog; 1991; 7(6):516-25. PubMed ID: 1367752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-immobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in kappa-carrageenan gel beads.
    Hunik JH; Bos CG; van den Hoogen MP; De Gooijer CD; Tramper J
    Biotechnol Bioeng; 1994 May; 43(11):1153-63. PubMed ID: 18615529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving immobilized biocatalysts by gel phase polymerization.
    Kuu WY; Polack JA
    Biotechnol Bioeng; 1983 Aug; 25(8):1995-2006. PubMed ID: 18551546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous production of mixed lactic starters containing probiotics using immobilized cell technology.
    Doleyres Y; Fliss I; Lacroix C
    Biotechnol Prog; 2004; 20(1):145-50. PubMed ID: 14763837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic characteristics of immobilized cell beads in a liquid-solid fluidized-bed bioreactor.
    Wu JY; Chen KC; Chen CT; Hwang SC
    Biotechnol Bioeng; 2003 Sep; 83(5):583-94. PubMed ID: 12827700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of some biochemical properties of artichoke polyphenol oxidase entrapped in alginate-carrageenan and alginate gels.
    Yagar H; Kocaturk S
    Artif Cells Nanomed Biotechnol; 2014 Aug; 42(4):268-73. PubMed ID: 23795723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film.
    Rhim JW
    J Food Sci; 2012 Dec; 77(12):N66-73. PubMed ID: 23170836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of modifying alumina air abrasion parameters on the fracture strength of a porcelain laminate restorative material.
    Addison O; Marquis PM; Fleming GJ
    Dent Mater; 2007 Nov; 23(11):1332-41. PubMed ID: 17194472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of single pellets containing acrylic polymers.
    Wang CC; Zhang G; Shah NH; Infeld MH; Malick AW; McGinity JW
    Pharm Dev Technol; 1996 Jul; 1(2):213-22. PubMed ID: 9552348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers.
    Zhu GL; Hu YY; Wang QR
    Water Sci Technol; 2009; 59(12):2379-86. PubMed ID: 19542643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology of κ/ι-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation.
    Torres MD; Chenlo F; Moreira R
    Int J Biol Macromol; 2016 May; 86():418-24. PubMed ID: 26827757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.