These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18642330)

  • 1. Simulation of penicillin production in fed-batch cultivations using a morphologically structured model.
    Zangirolami TC; Johansen CL; Nielsen J; Jørgensen SB
    Biotechnol Bioeng; 1997 Dec; 56(6):593-604. PubMed ID: 18642330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis.
    Giudici R; Pamboukian CR; Facciotti MC
    Biotechnol Bioeng; 2004 May; 86(4):414-24. PubMed ID: 15112294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A morphologically structured model for penicillin production.
    Birol G; Undey C; Parulekar SJ; Cinar A
    Biotechnol Bioeng; 2002 Mar; 77(5):538-52. PubMed ID: 11788952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations.
    Neubauer P; Häggström L; Enfors SO
    Biotechnol Bioeng; 1995 Jul; 47(2):139-46. PubMed ID: 18623386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations.
    Menezes JC; Alves SS; Lemos JM; de Azevedo SF
    J Chem Technol Biotechnol; 1994 Oct; 61(2):123-38. PubMed ID: 7765415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and physiology of an alpha-amylase producing strain of Aspergillus oryzae during batch cultivations.
    Carlsen M; Spohr AB; Nielsen J; Villadsen J
    Biotechnol Bioeng; 1996 Feb; 49(3):266-76. PubMed ID: 18623577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation.
    Haack MB; Olsson L; Hansen K; Eliasson Lantz A
    Appl Microbiol Biotechnol; 2006 Apr; 70(4):482-7. PubMed ID: 16133324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of polysialic acid production in Escherichia coli K1 during batch cultivation and fed-batch cultivation applying two different control strategies.
    Chen R; John J; Rode B; Hitzmann B; Gerardy-Schahn R; Kasper C; Scheper T
    J Biotechnol; 2011 Jul; 154(4):222-9. PubMed ID: 21530596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum.
    Paul GC; Thomas CR
    Biotechnol Bioeng; 1996 Sep; 51(5):558-72. PubMed ID: 18629820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-stage high cell continuous fermentation for high productivity and titer.
    Chang HN; Kim NJ; Kang J; Jeong CM; Choi JD; Fei Q; Kim BJ; Kwon S; Lee SY; Kim J
    Bioprocess Biosyst Eng; 2011 May; 34(4):419-31. PubMed ID: 21127908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of an industrial-scale fed-batch fermentation simulation.
    Goldrick S; Ştefan A; Lovett D; Montague G; Lennox B
    J Biotechnol; 2015 Jan; 193():70-82. PubMed ID: 25449107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clavulanic acid degradation in Streptomyces clavuligerus fed-batch cultivations.
    Roubos JA; Krabben P; de Laat WT; Babuska R; Heijnen JJ
    Biotechnol Prog; 2002; 18(3):451-7. PubMed ID: 12052058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability.
    Meinander NQ; Hahn-Hägerdal B
    Biotechnol Bioeng; 1997 May; 54(4):391-9. PubMed ID: 18634106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations.
    Jørgensen H; Nielsen J; Villadsen J; Møllgaard H
    Biotechnol Bioeng; 1995 Apr; 46(2):117-31. PubMed ID: 18623271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations.
    Hantelmann K; Kollecker M; Hüll D; Hitzmann B; Scheper T
    J Biotechnol; 2006 Feb; 121(3):410-7. PubMed ID: 16125265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular pH-based controlled cultivation of yeast cells: II. cultivation methodology.
    Sureshkumar GK; Mutharasan R
    Biotechnol Bioeng; 1993 Jul; 42(3):295-302. PubMed ID: 18613012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and product formation of Aspergillus oryzae during submerged cultivations: verification of a morphologically structured model using fluorescent probes.
    Agger T; Spohr AB; Carlsen M; Nielsen J
    Biotechnol Bioeng; 1998 Feb; 57(3):321-9. PubMed ID: 10099209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation.
    Basak S; Velayudhan A; Ladisch MR
    Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics analysis of growth and lactic acid production in pH-controlled batch cultures of Lactobacillus casei KH-1 using yeast extract/corn steep liquor/glucose medium.
    Ha MY; Kim SW; Lee YW; Kim MJ; Kim SJ
    J Biosci Bioeng; 2003; 96(2):134-40. PubMed ID: 16233498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental optimization of a real time fed-batch fermentation process using Markov decision process.
    Saucedo VM; Karim MN
    Biotechnol Bioeng; 1997 Jul; 55(2):317-27. PubMed ID: 18636490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.