These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18642591)

  • 41. Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos.
    Hauptmann G; Söll I; Krautz R; Theopold U
    J Vis Exp; 2016 Jan; (107):e53830. PubMed ID: 26862978
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Embryological manipulations in zebrafish.
    Sun Y; Wloga D; Dougan ST
    Methods Mol Biol; 2011; 770():139-84. PubMed ID: 21805264
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems.
    Lauter G; Söll I; Hauptmann G
    BMC Dev Biol; 2011 Jul; 11():43. PubMed ID: 21726453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-throughput method for extracting and visualizing the spatial gene expressions from in situ hybridization images: A case study of the early development of the sea anemone Nematostella vectensis.
    Abdol AM; Bedard A; Lánský I; Kaandorp JA
    Gene Expr Patterns; 2018 Jan; 27():36-45. PubMed ID: 29122675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A critical role for myoglobin in zebrafish development.
    Vlecken DH; Testerink J; Ott EB; Sakalis PA; Jaspers RT; Bagowski CP
    Int J Dev Biol; 2009; 53(4):517-24. PubMed ID: 19378255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A gene expression screen in zebrafish embryogenesis.
    Kudoh T; Tsang M; Hukriede NA; Chen X; Dedekian M; Clarke CJ; Kiang A; Schultz S; Epstein JA; Toyama R; Dawid IB
    Genome Res; 2001 Dec; 11(12):1979-87. PubMed ID: 11731487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discovery and characterization of three novel synuclein genes in zebrafish.
    Sun Z; Gitler AD
    Dev Dyn; 2008 Sep; 237(9):2490-5. PubMed ID: 18521955
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Data integration for spatio-temporal patterns of gene expression of zebrafish development: the GEMS database.
    Belmamoune M; Verbeek FJ
    J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of PCR template-derived probes prevents off-target whole mount in situ hybridization in transgenic zebrafish.
    Cha YR; Weinstein BM
    Zebrafish; 2012 Jun; 9(2):85-9. PubMed ID: 22715949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos.
    Hsu T; Huang KM; Tsai HT; Sung ST; Ho TN
    Aquat Toxicol; 2013 Jan; 126():9-16. PubMed ID: 23143036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The molecular structures and expression patterns of zebrafish troponin I genes.
    Fu CY; Lee HC; Tsai HJ
    Gene Expr Patterns; 2009 Jun; 9(5):348-56. PubMed ID: 19602390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zebrafish embryo intersegmental vessels: a tool for investigating sprouting angiogenesis.
    Tobia C; Gariano G; Guerra J; Presta M
    Methods Mol Biol; 2015; 1214():173-84. PubMed ID: 25468604
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning, expression pattern and essentiality of the high-affinity copper transporter 1 (ctr1) gene in zebrafish.
    Mackenzie NC; Brito M; Reyes AE; Allende ML
    Gene; 2004 Mar; 328():113-20. PubMed ID: 15019990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiplexed in situ hybridization using hybridization chain reaction.
    Choi HM; Beck VA; Pierce NA
    Zebrafish; 2014 Oct; 11(5):488-9. PubMed ID: 25188553
    [No Abstract]   [Full Text] [Related]  

  • 56. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption.
    Schiller V; Wichmann A; Kriehuber R; Muth-Köhne E; Giesy JP; Hecker M; Fenske M
    Comp Biochem Physiol C Toxicol Pharmacol; 2013 Jan; 157(1):41-53. PubMed ID: 23017276
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An optimized procedure for whole-mount in situ hybridization on mouse embryos and embryoid bodies.
    Piette D; Hendrickx M; Willems E; Kemp CR; Leyns L
    Nat Protoc; 2008; 3(7):1194-201. PubMed ID: 18600225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and characterization of the zebrafish orthologue of the human FOLR1 gene during embryogenesis.
    Jones RN; Erhard SA; Malham MR; Gen AY; Sullivan K; Olsen KW; Dale RM
    Gene Expr Patterns; 2017 Nov; 25-26():159-166. PubMed ID: 28826993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel zebrafish kelchlike gene klhl and its human ortholog KLHL display conserved expression patterns in skeletal and cardiac muscles.
    Wu YL; Gong Z
    Gene; 2004 Aug; 338(1):75-83. PubMed ID: 15302408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
    Crombach A; Cicin-Sain D; Wotton KR; Jaeger J
    PLoS One; 2012; 7(9):e46658. PubMed ID: 23029561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.