These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18642675)

  • 1. Cell growth, cell-cycle progress, and antibody production in hybridoma cells cultivated under mild hypothermic conditions.
    Chong SL; Mou DG; Ali AM; Lim SH; Tey BT
    Hybridoma (Larchmt); 2008 Apr; 27(2):107-11. PubMed ID: 18642675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The production of monoclonal antibody in growth-arrested hybridomas cultivated in suspension and immobilized modes.
    Seifert DB; Phillips JA
    Biotechnol Prog; 1999; 15(4):655-66. PubMed ID: 10441357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of endogenous proteins on growth and antibody productivity in hybridoma batch cultures.
    Farrell PJ; Kalogerakis N; Behie LA
    Cytotechnology; 1994; 15(1-3):95-102. PubMed ID: 7765957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed understanding of the enhanced hypothermic productivity of interferon-gamma by Chinese-hamster ovary cells.
    Fox SR; Tan HK; Tan MC; Wong SC; Yap MG; Wang DI
    Biotechnol Appl Biochem; 2005 Jun; 41(Pt 3):255-64. PubMed ID: 15504103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific monoclonal antibody productivity and the cell cycle-comparisons of batch, continuous and perfusion cultures.
    al-Rubeai M; Emery AN; Chalder S; Jan DC
    Cytotechnology; 1992; 9(1-3):85-97. PubMed ID: 1369185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperosmotic stress in murine hybridoma cells: effects on antibody transcription, translation, posttranslational processing, and the cell cycle.
    Sun Z; Zhou R; Liang S; McNeeley KM; Sharfstein ST
    Biotechnol Prog; 2004; 20(2):576-89. PubMed ID: 15059005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downregulation of NFAT5 by RNA interference reduces monoclonal antibody productivity of hybridoma cells.
    Ju J; Zou K; Xie H
    Cell Res; 2007 Mar; 17(3):264-70. PubMed ID: 17310218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of synchronization on CD40 expression and antibody production in hybridoma cells stimulated with anti-mIgG.
    Martín-López A; García-Camacho F; Contreras-Gómez A; Molina-Grima E
    Biotechnol Prog; 2007; 23(4):958-63. PubMed ID: 17571854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapamycin reduces hybridoma cell death and enhances monoclonal antibody production.
    Balcarcel RR; Stephanopoulos G
    Biotechnol Bioeng; 2001; 76(1):1-10. PubMed ID: 11400101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of Chinese hamster ovary cells to low culture temperature: cell growth and recombinant protein production.
    Yoon SK; Hong JK; Choo SH; Song JY; Park HW; Lee GM
    J Biotechnol; 2006 Apr; 122(4):463-72. PubMed ID: 16253368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of three-dimensional culturing in a fibrous matrix on cell cycle, apoptosis, and MAb production by hybridoma cells.
    Luo J; Yang ST
    Biotechnol Prog; 2004; 20(1):306-15. PubMed ID: 14763857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.
    Dong H; Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2005; 21(1):140-7. PubMed ID: 15903251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a new protein- and hormone-free medium for hybridoma cultivation.
    Toyoda K; Inouye K
    Agric Biol Chem; 1991 Jun; 55(6):1631-3. PubMed ID: 1368706
    [No Abstract]   [Full Text] [Related]  

  • 14. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles.
    Nilsang S; Nehru V; Plieva FM; Nandakumar KS; Rakshit SK; Holmdahl R; Mattiasson B; Kumar A
    Biotechnol Prog; 2008; 24(5):1122-31. PubMed ID: 19194922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHO cells adapted to hypothermic growth produce high yields of recombinant beta-interferon.
    Sunley K; Tharmalingam T; Butler M
    Biotechnol Prog; 2008; 24(4):898-906. PubMed ID: 19194899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active hypothermic growth: a novel means for increasing total interferon-gamma production by Chinese-hamster ovary cells.
    Fox SR; Yap MX; Yap MG; Wang DI
    Biotechnol Appl Biochem; 2005 Jun; 41(Pt 3):265-72. PubMed ID: 15504104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality.
    deZengotita VM; Abston LR; Schmelzer AE; Shaw S; Miller WM
    Biotechnol Bioeng; 2002 Jun; 78(7):741-52. PubMed ID: 12001166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells.
    Yoon SK; Kim SH; Lee GM
    Biotechnol Prog; 2003; 19(4):1383-6. PubMed ID: 12892507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced specific antibody productivity of calcium alginate-entrapped hybridoma is cell line-specific.
    Lee GM; Kim SJ; Palsson BO
    Cytotechnology; 1994; 16(1):1-15. PubMed ID: 7765785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of producer hybridoma cell lines after cell sorting: a case study.
    Kromenaker SJ; Srienc F
    Biotechnol Prog; 1994; 10(3):299-307. PubMed ID: 7764937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.