These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 18643041)

  • 1. Existence of an upper critical dimension in the majority voter model.
    Yang JS; Kim IM; Kwak W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051122. PubMed ID: 18643041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical behavior of the majority voter model is independent of transition rates.
    Kwak W; Yang JS; Sohn JI; Kim IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061110. PubMed ID: 17677223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Majority-vote model on hyperbolic lattices.
    Wu ZX; Holme P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011133. PubMed ID: 20365349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical phenomena in the majority voter model on two-dimensional regular lattices.
    Acuña-Lara AL; Sastre F; Vargas-Arriola JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052109. PubMed ID: 25353741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d-dimensional hypercubic lattices: A series expansion study.
    Singh RRP; Young AP
    Phys Rev E; 2017 Aug; 96(2-1):022139. PubMed ID: 28950636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric scaling behaviors of the Fortuin-Kasteleyn Ising model in high dimensions.
    Fang S; Zhou Z; Deng Y
    Phys Rev E; 2023 Apr; 107(4-1):044103. PubMed ID: 37198783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition in the majority-vote model on the Archimedean lattices.
    Yu U
    Phys Rev E; 2017 Jan; 95(1-1):012101. PubMed ID: 28208396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear Glauber model.
    de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066101. PubMed ID: 16241298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transition in a coevolving network of conformist and contrarian voters.
    Yi SD; Baek SK; Zhu CP; Kim BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012806. PubMed ID: 23410387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster Monte Carlo simulation of the transverse Ising model.
    Blöte HW; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066110. PubMed ID: 12513350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical phenomena of the majority voter model in a three-dimensional cubic lattice.
    Acuña-Lara AL; Sastre F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041123. PubMed ID: 23214545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional randomly dilute Ising model: Monte Carlo results.
    Calabrese P; Martín-Mayor V; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036136. PubMed ID: 14524861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upper and lower critical decay exponents of Ising ferromagnets with long-range interaction.
    Horita T; Suwa H; Todo S
    Phys Rev E; 2017 Jan; 95(1-1):012143. PubMed ID: 28208323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems.
    Dashti-Naserabadi H; Najafi MN
    Phys Rev E; 2017 Oct; 96(4-1):042115. PubMed ID: 29347586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum effects on criticality of an Ising model in scale-free networks: Beyond mean-field universality class.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):012103. PubMed ID: 20365414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splitting the voter Potts model critical point.
    Droz M; Ferreira AL; Lipowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056108. PubMed ID: 12786221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block voter model: phase diagram and critical behavior.
    Sampaio-Filho CI; Moreira FG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051133. PubMed ID: 22181394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depinning transition of a driven interface in the random-field Ising model around the upper critical dimension.
    Roters L; Lübeck S; Usadel KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):069901. PubMed ID: 12613465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.